• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Depression of pyrite in the flotation of copper ores

He, Shuhua January 2006 (has links)
One of the problems in the flotation of copper sulphide ores in moderately alkaline pH conditions is the misreporting of iron sulphide minerals into copper concentrates, which results in low copper grades. The relatively strong flotation of iron sulphides is caused by their copper activation from copper species dissolved from copper minerals present in the ore. In this study, several methods were used to reduce copper activation of pyrite during grinding or to minimise its effect on the flotation of pyrite at pH 9.0. Various surface analytical techniques were used to identify the mechanism of these methods and to optimise their performance. / First, it was confirmed that strong pyrite floatation at pH 9.0 in the presence of xanthate was caused by copper activation during grinding with copper sulphate or in the presence of chalcopyrite in single or mixed mineral flotation experiments, respectively. It was found that pyrite flotation is Eh dependent with low flotation for pulp oxidation potential, Eh, values lower than 7 mV (SHE), strong flotation between 7 and 50 mV, and flotation decreasing above 50 mV. The sharp increase in pyrite flotation around neutral Eh values was associated with high copper and xanthate adsorption while the decreased flotation at higher Eh values was caused by the formation of ferric hydroxide at the pyrite surface which in turn reduced copper adsorption but also reduced hydrophobicity. From the measurement by X-ray photoelectron spectroscopy (XPS) of the type and proportion of surface species, it was possible to calculated a hydrophobicity index at each step in the grinding discharge, during conditioning, in each flotation concentrate and finally in the tailing. A satisfactory agreement was obtained between this XPS hydophobicity index and the flotation recovery in each concentrate. / It was found that pyrite could be separated from chalcopyrite at pH 9.0 by controlling the pulp Eh value with maximum mineral separation and chalcopyrite flotation occurring at an Eh of 275 mV. This mineral separation could be further increased with the addition of zinc sulphate which selectively adsorbs or precipitates on the pyrite surface as zinc hydroxide via electrostatic interaction. The selectivity of this adsorption, and therefore larger pyrite depression, is the result of the larger amount of ferric hydroxide formed on the pyrite surface because of the more cathodic nature of this mineral. Thioglycolic acid (TGA) was also found to selectively depress pyrite flotation when added during grinding but, if added during conditioning, its effect on pyrite depression was only observed in the presence of citric acid (CA). This depression was related to the removal of copper hydroxide from the pyrite surface as both TGA and CA are strong complexants of cupric hydroxide (but also ferric hydroxide); as a result, fewer sites are available for xanthate adsorption. Citric acid is a weaker complexant than TGA, especially in the presence of xanthate; its role is to mop up the surface ferric hydroxide so that TGA is free to react with copper hydroxide. More importantly, in less oxidising conditions and with no Eh control, addition of zinc sulphate or TGA increased chalcopyrite flotation but had no effect on pyrite flotation. Pyrite flotation could also be reduced with addition of xanthate during grinding. In this case, the selective depression of pyrite flotation was attributed to the immobilisation of copper by xanthate at the chalcopyrite surface or its removal from solution, both mechanisms resulting in a reduced copper activation of pyrite. Pyrite depression and chalcopyrite flotation, and therefore mineral separation, were optimised with collector addition in both the grinding and conditioning stages. / Finally, the efficacy of these methods has been substantiated by comparing their effects on iron sulphide depression in two copper sulphide ores and with more common methods of iron sulphide depression. / Thesis (PhDAppliedScience)--University of South Australia, 2006
42

A study of the precipitation of iron di-sulphide and its relation to certain types of deposits

McNutt, Vachel Harry. January 1912 (has links) (PDF)
Thesis (M.S.)--University of Missouri, School of Mines and Metallurgy, 1912. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed April 20, 2009) Includes bibliographical references.
43

Dithiocarbonate and trithiocarbonate interactions with pyrite and copper

Venter, Jan Albert January 2007 (has links)
Thesis (MSc.(Metallurgy)--University of Pretoria, 2007. / Includes bibliographical references.
44

Chemical and microbial control of pyrite weathering and its implications to arsenic mobility and sulfur and iron geochemistry

Zhu, Wenyi, January 2010 (has links)
Thesis (Ph. D.)--Rutgers University, 2010. / "Graduate Program in Environmental Sciences." Includes bibliographical references.
45

The role of sulfur in salt marsh metabolism.

Howarth, Robert Warren. January 1979 (has links)
Thesis (Ph. D.)--M.I.T., Dept. of Biology, 1979. / Supervised by John M. Teal. Vita. Includes bibliographies.
46

The Influence of Surface Chemistry on the Photoelectrochemical Properties of FeS(2) Photoanodes

Tong, Qi 05 August 2015 (has links)
The recurring theme of this dissertation is the correlation between FeS2 surface chemistry and key electrical and electronic properties of FeS2. Efforts have been made to identify and characterize the FeS2 surface, investigate the photoelectrochemistry of FeS2 photoanodes under anhydrous and anoxic conditions, and investigate the influence of deliberate surface chemistry on FeS2 photoelectrochemistry. Infrared reflection-absorption spectroscopy (IRRAS) was used to investigate a thin adsorbate layer on pyrite. The results showed that the combination of angle-dependent studies and computational efforts are a powerful tool for characterizing the pyrite surface. The photoelectrochemistry of FeS2 photoanodes was investigated in an I¯/I3¯ acetonitrile electrolyte acetonitrile electrolyte. The results revealed that the non-aqueous system was suitable for strictly anhydrous and anoxic photoelectrochemical studies. A model was proposed to explain the observed influence of concentration of dissolved I2 on the photovoltage. A central component of the proposed model was that shunting was assumed to take place at physically distinct regions of the electrode and that mass-transport to and from these regions could be treated separately from mass-transport to the regions responsible for the rectifying behavior of the FeS2/liquid junction. The implication of the agreement between experimental and calculated J-E curves is that macroscopic photoelectrochemical investigations may underestimate the quality of FeS2 photoanodes due to the presence of defects. The influence of surface treatments on FeS2 photoelectrochemistry was further studied using non-coordinating redox species. A statistically significant increase of photovoltage was observed after treating FeS2 surfaces with KCN. X-ray photoelectron spectroscopy was used to study chemical bond formation between the electron donating ligands and iron(II) centers on the pyrite surface. The results were discussed in terms of charge recombination models and surface coordination chemistry. Unfinished work is also presented. Cathodic polarization in acidic media is a prerequisite for any detectable photoresponse. The exact function of the electrochemical activations was further investigated by electropolishing pyrite electrode under different experimental conditions including etchant identity and applied bias. The results suggested that the electrochemical treatment removes the damaged surface layer caused by mechanical polishing, and might also stabilize the surface states. Further experiments can be focus on anhydrous etching of pyrite photoanode. The research presented in this dissertation guides future studies of thin film FeS2 photovoltaics.
47

Electrochemical studies of pyrite and galena

Li, Yanqing 10 June 2009 (has links)
The major objective of this work was to investigate the initial oxidation behavior of pyrite in order to better understand how mine wastes containing pyrite generate acid water. It was found that a unique potential exists at which a fresh surface of pyrite undergoes neither oxidation nor reduction. This potential is pH dependent and is referred to as the "stable" potential. The stable potential was found to be 0 V at pH 4.6 and -0.3 V at pH 9.2. Fresh, unoxidized pyrite surfaces were obtained by fracturing under the electrolyte while holding at the stable potentials. The initial oxidation behavior of pure pyrite was investigated using cyclic voltammetry technique by beginning potential sweeps from the stable potential and sweeping in the positive-going or negative-going direction. The effects of semiconducting properties of pyrite on its electrochemical behavior were studied by photocurrent measurement. The results indicate that pyrite samples from Peru and Spain are all highly n-type. A spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edge over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. Electrochemical and photocurrent measurements were also conducted on galena for comparison with pyrite. The results indicate that galena samples from the same cluster have varying semiconducting properties, ranging from nearly intrinsic to highly n-type. Abrasion introduces defects in the surface of pyrite and galena, which strongly decrease the magnitude of photocurrent. / Master of Science
48

The kinetics of pyrite and elemental sulfur reactions during nitric acid pre-oxidation of refractory gold ores / by James R. Flatt.

Flatt, James R. (James Robert) January 1996 (has links)
Bibliography: leaves 192-193. / ix, 214, ix leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The focus of the thesis is to investigate the fundamental kinetics of the pyrite-nitric acid system. Particular attention is paid to the formation and oxidation of elemental sulfur. The study aims to elucidate the chemistry of the sulfide oxidation and of elemental sulfur formation and oxidation. / Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 1997?
49

Immobilization of mercury using iron sulfide minerals

Bower, Julia Michelle. January 2007 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2007. / Abstract. Includes bibliographic references (ℓ. 70-76)
50

Permanganate passivation a study of the longevity of the process and its behavior under different external conditions /

Vasquez, Felipe. January 2008 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2008. / "December, 2008." Includes bibliographical references (leaves 61-62). Online version available on the World Wide Web.

Page generated in 0.0659 seconds