• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane Specificity of Proton Pyrophosphatase and Plasmodesmata Ultrastructure Provide the Structural Basis for Sugar Loading in Oryza sativa and Physcomitrella patens

January 2016 (has links)
abstract: The remarkable conservation of molecular and intra-/inter-cellular pathways underpinning the fundamental aspects of sugar partitioning in two evolutionarily divergent organisms – a non-vascular moss Physcomitrella patens and a vascular cereal crop Oryza sativa (rice) – forms the basis of this manuscript. Much of our current knowledge pertaining to sugar partitioning in plants mainly comes from studies in thale cress, Arabidopsis thaliana, but how photosynthetic sugar is loaded into the phloem in a crop as important as rice is still debated. Even less is known about the mechanistic aspects of sugar movement in mosses. In plants, sugar either moves passively via intercellular channels called plasmodesmata, or through the cell wall spaces in an energy-consuming process. As such, I first investigated the structure of plasmodesmata in rice leaf minor vein using electron tomography to create as of yet unreported 3D models of these channels in both simple and branched conformations. Contrary to generally held belief, I report two different 3D morphotypes of simple plasmodesmata in rice. Furthermore, the complementary body of evidence in arabidopsis implicates plasma membrane localized Proton Pyrophosphatase (H+-PPase) in the energy-dependent movement of sugar. Within this wider purview, I studied the in situ ultrastructural localization patterns of H+-PPase orthologs in high-pressure frozen tissues of rice and physcomitrella. Were H+-PPases neo-functionalized in the vascular tissues of higher plants? Or are there evolutionarily conserved roles of this protein that transcend the phylogenetic diversity of land plants? I show that H+-PPases are distinctly expressed in the actively growing regions of both rice and physcomitrella. As expected, H+-PPases were also localized in the vascular tissues of rice. But surprisingly, H+-PPase orthologs were also prominently expressed at the gametophyte-sporophyte junction of physcomitrella. Upon immunogold labeling, H+-PPases were found to be predominantly localized at the plasma membrane of the phloem complexes of rice source leaves, and both the vacuoles and plasma membrane of the transfer cells in the physcomitrella haustorium, linking H+-PPases in active sucrose loading in both plants. As such, these findings suggest that the localization and presumably the function of H+-PPases are conserved throughout the evolutionary history of land plants. / Dissertation/Thesis / 3D MODEL OF SIMPLE PLASMODESMATA / 3D MODEL OF COMPLEX PLASMODESMATA / MODELING SIMPLE PLASMODESMATA IN IMOD / MODELING COMPLEX PLASMODESMATA IN IMOD / Doctoral Dissertation Biology 2016
2

Targeting the mevalonate pathway for pharmacological intervention

Tsoumpra, Maria January 2011 (has links)
Farnesyl pyrophosphate synthase (FPPS) is a key branch point enzyme in the mevalonate pathway and the main molecular target of nitrogen-containing bisphosphonates (N-BPs), potent inhibitors of osteoclastic activity and the leading drug of choice for conditions characterized by excessive bone resorption. The main aim of this thesis is to investigate the interaction of N-BPs with FPPS in order to gain further insights into the mechanism of drug inhibition. Kinetic and crystallographic studies following site-directed mutagenesis of FPPS reveal key residues involved in stabilization of carbocation intermediate, substrate binding and formation of a tight enzyme-inhibitor complex. The aromatic ring of Tyr204 is involved in N-BP binding but not in the catalytic mechanism, where the hydroxyl moiety plays an important role. Lys200 is implicated in regulation of substrate binding, product specificity and enzyme isomerization which leads to a tight binding inhibition. Phe239 is considered important for the FPPS C-terminal switch which stabilizes substrate binding and promotes the inhibitor induced isomerized state. The highly conserved Arg112, Asp103 and Asp107 are pivotal for catalysis. Successful purification of the full length of Rab geranylgeranyl transferase (RGGT) complex downstream of the FPPS in the mevalonate pathway was achieved and may lead to co-crystallization with BP analogues and identification of the putative site of drug binding. Investigation of the in vitro effect of N-BPs on osteoclastogenesis suggest a correlation with FPPS inhibition kinetics for the most potent N-BPs but indicate an alternative mechanism of the disruption of bone resorption by alendronate. Together these results highlight the importance of the multiple interactions of N-BPs with side-chain residues of FPPS which dictate their strength of binding and advance the understanding of their pharmacophore effect.

Page generated in 0.0679 seconds