• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Pressure Phase Equilibria in the Carbon Dioxide + Pyrrole System

Thamanavat, Kanrakot 01 December 2004 (has links)
The objectives of this work are to measure phase equilibria in the carbon dioxide + pyrrole system and to correlate and predict the phase behavior of this system with a thermodynamic model. This binary system is of interest due to the growing applications of supercritical carbon dioxide as a solvent or reaction medium for pyrrole. Polypyrrole is an electrically conducting polymer of interest in a number of applications such as anti-static coatings. Pyrrole has also been used as a reactant in enzymatic reaction. Knowledge of the phase behavior of carbon dioxide + pyrrole system is therefore necessary for evaluating optimal conditions and feasibility of such applications. Phase equilibria in the carbon dioxide + pyrrole system were measured at 313 K, 323 K, and 333 K using a synthetic method. Liquid-vapor (LV) phase behavior and liquid-liquid (LL) phase behavior were observed. The pressure in the experiments ranged from 84 to 151.1 bar. The Patel-Teja equation of state and the Mathias-Klotz-Prausnitz mixing rule with two temperature independent parameters was able to correlate the phase equilibrium data satisfactorily and was used to predict the phase behavior at other temperatures. A pressure-temperature diagram was then constructed from these calculations and suggests that the carbon dioxide + pyrrole system exhibit type IV phase behavior in the classification of Scott and van Konynenburg.

Page generated in 0.0716 seconds