• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DYNAMIC SIMULATION TOOL FOR DISTRIBUTION FEEDERS USING A SPARSE TABLEAU APPROACH

Aravindkumar Rajakumar (17929553) 22 May 2024 (has links)
<p dir="ltr">Distributed energy resources (DERs), such as rooftop solar generation and energy storage systems, are becoming more prevalent in distribution systems. DERs are connected to the distribution system via power electronic converters, introducing faster dynamics in the system. Understanding the system dynamics under a high penetration of inverter-based DERs is critical for power system researchers and practitioners, driving the development of modeling techniques and simulation software. Aiming to reduce computational complexity, existing tools and techniques often employ various approximations. Meanwhile, modern advancements in computational hardware capabilities provide opportunities to include the faster time-scale dynamics. To address this, the primary objective of this thesis is to develop an open-source Python simulation package, Dynamic Simulation using Sparse Tableau Approach in Python, DynaSTPy (pronounced “dynasty”), capable of capturing the dynamics of all components in a distribution feeder. The distribution feeder is modeled as a system of Differential-Algebraic Equations (DAEs). Further, each component in the feeder is modeled based on the Sparse Tableau Approach (STA), which involves the representation of component model equations using sparse matrices, facilitating a systematic procedure to model the components and construct the system DAEs. In sinusoidal steady state, the DAEs can be represented in phasor form, extending the approach to perform power flow analysis of distribution feeders.</p>

Page generated in 0.0711 seconds