• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spatial and network aspects of the spread of infectious diseases in livestock populations

Churakov, Mikhail January 2014 (has links)
In this thesis, I focus on methodological concepts of studying infectious disease transmission between agricultural premises. I used different disease systems as exemplars for spatial and network methods to investigate transmission patterns. Infectious diseases cause tangible economic threat to the farming industry worldwide by damaging livestock populations, reducing farm productivity and causing trade restriction. This implies the importance of veterinary epidemiological studies in control and eradication of pathogens. Recent increase in availability of data and computational power allowed for more opportunities to study mechanisms of pathogenic transmission. Nowadays, the bottleneck is primarily associated with efficient methods that can analyse vast amounts of high-resolution data. Here I address two livestock pathogens that differ in their epidemiology: bacteria Streptococcus agalactiae and foot-and-mouth disease (FMD) virus. Streptococcus agalactiae is a contagious pathogen that causes mastitis in cattle, and thus possesses a substantial economic burden to the dairy industry. Known transmission routes between cattle are restricted to those via milking machines, milkers’ hands and fomites during milking process. Additionally, recent studies suggested potential introductions from other host species: primarily, humans. However, strain typing data showed discrepancies in strain compositions of bacteria isolated from humans and bovines. In this thesis, strain-specific features of between-herd transmission of Streptococcus agalactiae within dairy cattle population in Denmark are investigated. Foot-and-mouth disease (FMD) is a viral infection that affects cloven-hoofed animals and is of big importance mainly because of the trade restrictions against infected regions and countries. Control programmes against FMD usually include vaccination and culling of animals. However, the debate on the optimal control for FMD is still ongoing. In this thesis, I address questions on identification of the routes of infection and on requirements for movement recording systems to be used for efficient contact tracing during an FMD outbreak. This thesis reveals several interesting findings. Firstly, the increased understanding of strain-specific transmission characteristics of Streptococcus agalactiae. One of the observed strains (ST103) showed significant and consistent spatial clustering of its cases among Danish dairy cattle herds in 2009–2011. Secondly, the network analysis of cattle movements and affiliations with veterinary practices showed that veterinary practices were exclusively associated with transmission of ST103 of Streptococcus agalactiae. Contrastingly, movement networks appeared to be important for all the three predominant bacterial strains (ST1, ST23 and ST103). Fourthly, the new extended approach that allows estimation of the whole transmission tree at once was proposed and tested for the Darlington cluster within the 2001 FMD UK epidemic. Finally, in chapter 6, it was shown that mathematical modelling did not suggest any advantages of ensuring smaller delays in the post-silent control of FMD-like pathogens.
12

Mathematical modelling and simulation of biofuel cells

Osman, Mohamad Hussein January 2013 (has links)
Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in principle, more sustainable than that of conventional fuel cells. The cost benefits over traditional precious-metal catalysts, and the mild operating conditions represent further advantages. It is important that mathematical models are developed to reduce the burden on laboratory based testing and accelerate the development of practical systems. In this study, recent key developments in bio-fuel cell technology are reviewed and two different approaches to modelling biofuel cells are presented, a detailed physics-based approach, and a data-driven regression model. The current scientific and engineering challenges involved in developing practical bio-fuel cell systems are described, particularly in relation to a fundamental understanding of the reaction environment, the performance and stability requirements, modularity and scalability. New materials and methods for the immobilization of enzymes and mediators on electrodes are examined, in relation to performance characteristics and stability. Fuels, mediators and enzymes used (anode and cathode), as well as the cell configurations employed are discussed. New developments in microbial fuel cell technologies are reviewed in the context of fuel sources, electron transfer mechanisms, anode materials and enhanced O2 reduction. Multi-dimensional steady-state and dynamic models of two enzymatic glucose/air fuel cells are presented. Detailed mass and charge balances are combined with a model for the reaction mechanism in the electrodes. The models are validated against experimental results. The dynamic performance under different cell voltages is simulated and the evolution of the system is described. Parametric studies are performed to investigate the effect of various operating conditions. A data-driven model, based on a reduced-basis form of Gaussian process regression, is also presented and tested. The improved computational efficiency of data-driven models makes them better candidates for modelling large complex systems.

Page generated in 0.0651 seconds