• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • Tagged with
  • 33
  • 33
  • 33
  • 33
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Repeated-root Cyclic Codes And Matrix Product Codes

Ozadam, Hakan 01 December 2012 (has links) (PDF)
We study the Hamming distance and the structure of repeated-root cyclic codes, and their generalizations to constacyclic and polycyclic codes, over finite fields and Galois rings. We develop a method to compute the Hamming distance of these codes. Our computation gives the Hamming distance of constacyclic codes of length $np^s$ in many cases. In particular, we determine the Hamming distance of all constacyclic, and therefore cyclic and negacyclic, codes of lengths p^s and 2p^s over a finite field of characteristic $p$. It turns out that the generating sets for the ambient space obtained by torsional degrees and strong Groebner basis for the ambient space are essentially the same and one can be obtained from the other. In the second part of the thesis, we study matrix product codes. We show that using nested constituent codes and a non-constant matrix in the construction of matrix product codes with polynomial units is a crucial part of the construction. We prove a lower bound on the Hamming distance of matrix product codes with polynomial units when the constituent codes are nested. This generalizes the technique used to construct the record-breaking examples of Hernando and Ruano. Contrary to a similar construction previously introduced, this bound is not sharp and need not hold when the constituent codes are not nested. We give a comparison of this construction with a previous one. We also construct new binary codes having the same parameters, of the examples of Hernando and Ruano, but non-equivalent to them.
32

Robust Conic Quadratic Programming Applied To Quality Improvement -a Robustification Of Cmars

Ozmen, Ayse 01 October 2010 (has links) (PDF)
In this thesis, we study and use Conic Quadratic Programming (CQP) for purposes of operational research, especially, for quality improvement in manufacturing. In previous works, the importance and benefit of CQP in this area became already demonstrated. There, the complexity of the regression method Multivariate Adaptive Regression Spline (MARS), which especially means sensitivity with respect to noise in the data, became penalized in the form of so-called Tikhonov regularization, which became expressed and studied as a CQP problem. This was leading to the new method CMARS / it is more model-based and employs continuous, actually, well-structured convex optimization which enables the use of Interior Point Methods and their codes such as MOSEK. In this study, we are generalizing the regression problem by including uncertainty in the model, especially, in the input data, too. CMARS, recently developed as an alternative method to MARS, is powerful in overcoming complex and heterogeneous data. However, for MARS and CMARS method, data are assumed to contain fixed variables. In fact, data include noise in both output and input variables. Consequently, optimization problem&rsquo / s solutions can show a remarkable sensitivity to perturbations in the parameters of the problem. In this study, we include the existence of uncertainty in the future scenarios into CMARS and robustify it with robust optimization which is dealt with data uncertainty. That kind of optimization was introduced by Aharon Ben-Tal and Arkadi Nemirovski, and used by Laurent El Ghaoui in the area of data mining. It incorporates various kinds of noise and perturbations into the programming problem. This robustification of CQP with robust optimization is compared with previous contributions that based on Tikhonov regularization, and with the traditional MARS method.
33

Constructions Of Bent Functions

Sulak, Fatih 01 January 2006 (has links) (PDF)
In cryptography especially in block cipher design, Boolean functions are the basic elements. A cryptographic function should have high nonlinearity as it can be attacked by linear attack. In this thesis the highest possible nonlinear boolean functions in the even dimension, that is bent functions, basic properties and construction methods of bent functions are studied. Also normal bent functions and generalized bent functions are presented.

Page generated in 0.0492 seconds