• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic activity in late-type stars

Hussain, Gaitee January 1999 (has links)
High resolution spectroscopic techniques are used to investigate the magnetic topology of the young, rapidly rotating star, AB Dor. Doppler images of AB Dor are produced using the Li I 6708 Å line and compared to images produced using Ca I and Fe i lines. A Li abundance of 2.9±0.3 dex is measured using LTE profile synthesis. By evaluating the effects of enhanced spot Li abundances we find that starspots are unlikely to lead to an overestimation of the photospheric Li abundance. While the Li I 6708 Å line is strengthened in the presence of starspots, the extent to which the Li I line equivalent width displays rotational modulation is diluted. A Zeeman Doppler imaging code, which maps the surface magnetic flux distributions on rapid rotators, has been developed and tested in this thesis. Reliability tests indicate that this technique is robust with respect to small errors in line and stellar parameters. Spectropolarimetric observations of AB Dor from three years are presented here. The technique of least squares deconvolution, combines the signal from over 1500 lines, enhancing the S/N of the observed dataset. Brightness and magnetic maps of AB Dor are reconstructed using the deconvolved profiles and show excellent agreement with maps produced using independently developed codes by J.-F. Donati. This points to the consistency of Doppler imaging techniques. Magnetic field maps show the presence of strong radial and azimuthal fields at almost all latitudes. This non-solar like distribution of magnetic flux may indicate the presence of a distributed dynamo component operating in the convection zones of rapid rotators. By tracing the positions of absorption transients in Ha, we find prominence complexes at almost all longitudes. Footpoint locations remain difficult to ascertain. Prominences are ejected over much shorter timescales than the timescale over which differential rotation should act further observations with closer time sampling are necessary to investigate the coronal topology further.

Page generated in 0.0854 seconds