Spelling suggestions: "subject:"QC 3.5 UL 2007 225"" "subject:"QC 3.5 UL 2007 1225""
1 |
Polarimetric active imaging : a feasibility demonstration in the infrared bandsRasmussen, Yannick 12 April 2018 (has links)
Plusieurs générations de systèmes d'imagerie active aéroportés et terrestres (ALBEDOS, ELVISS, LASSIE) ont été développées et testées avec succès au centre de Recherche et Développement pour la Défense du Canada (RDDC) Valcartier [1]. Ces systèmes utilisent un illuminateur composé de puissantes diodes laser puisées fonctionnant dans la bande du proche-infrarouge et une caméra à faible niveau d'intensité (LLLTV) avec crénelage en distance. Une technique appelée l'imagerie active par polarisation est une manière différente d'exploiter les propriétés des systèmes actifs. Cette technique emploie la polarisation de la lumière d'éclairement pour distinguer et augmenter le contraste des objets d'intérêt dans une scène. Pour appliquer cette technique, une source lumineuse polarisée fut employée et l'état de polarisation de la lumière réfléchie par la scène analysé. L'avantage avec cette méthode est que quelques objets synthétiques ou faits par l'Homme (par exemple les véhicules) réfléchissent la lumière sans changer la polarisation incidente et que les fonds naturels (par exemple l'herbe) tendent à dépolariser la lumière incidente [2-4]. Par conséquent, en analysant l'état de polarisation de la lumière réfléchie, il est possible d'augmenter le contraste des objets visés par rapport à leur arrière plan. Cette technique, également appelée discrimination de cibles par polarisation, est connue depuis un certain temps et est déjà utilisée dans des dispositifs d'imagerie passive comme les imageurs thermiques [5]. Cependant, l'application de ce concept à l'imagerie active devait être explorée et démontrée. La technique d'imagerie active par polarisation a donc été testée dans les trois principales sections de la radiation infrarouge: 1) le proche infrarouge (>.~810 nm), 2) l'infrarouge moyen (^.~3-5 u,m) et 3) l'infrarouge lointain (À.-8-12 um). Pour chacune des ces régions, une source laser, des polariseurs et une caméra furent utilisés pour faire de l'imagerie active polarisée. Plusieurs essais en laboratoire et à l'extérieur ont été faits pour comparer cette technique avec l'imagerie passive et l'imagerie active. Ces essais ont permis de démontrer que la polarisation et le traitement de ces images augmente le contraste de la majorité des cibles étudiées par rapport au contraste obtenu avec l'imagerie active conventionnelle. / Several generations (ALBEDOS, ELV1SS, LASSIE) of airborne and land-based active imaging Systems have been developed and tested successfully at the Defence Research and Development Canada (DRDC) Valcartier [1]. They were based on a powerful pulsed laser diode array illuminator operating in the near-infrared band and a range-gated low-light level TV (LLLTV) camera. A technique called polarimetric active imaging is a different way to exploit the properties of active imaging Systems. This technique uses the polarization of the illuminating light to discriminate and enhance the contrast of objects of interest within a scene. To apply this technique, a polarized light source was used and the polarization state of the light reflected by the scene was analyzed. The advantage with this method is that some man-made objects (e.g. vehicles) reflect light without changing the incident polarization and that natural backgrounds (e.g. grass) tend to depolarize the incident light [2-4]. Therefore, by analyzing the polarization state of the reflected light, it is possible to enhance the contrast of targeted objects with respect to the background. This concept also called target discrimination by polarization is known for some time and is already used in passive imaging devices like thermal imagers [5]. In active imaging, the application of the concept had to be explored and demonstrated. Therefore, the polarimetric active imaging technique was tested for the three major bands of the infrared radiation: 1) the near-infrared (^.-810 nm), 2) the mid-infrared (X-3-5 um) and 3) the far-infrared (A.-8-12 um). For each of these regions, a laser source, polarizers and one camera were used to evaluate the potential of polarimetric active imaging. Several field trials and experiments in laboratory were conducted to compare the polarimetric technique to passive and active imaging. These experiments permit to demonstrate that polarization and the treatment of these images enhance the contrast of the majority of the studied target compared to the contrast obtained with conventional active imaging.
|
Page generated in 0.0368 seconds