• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • Tagged with
  • 145
  • 145
  • 145
  • 145
  • 145
  • 34
  • 23
  • 21
  • 19
  • 19
  • 18
  • 18
  • 16
  • 15
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Synthesis And Characterization Of Waterborne Silane Coupling Agent Containing Silicone-acrylic Resin

Akin, Ozlem 01 September 2003 (has links) (PDF)
In this study, waterborne silicone-acrylic resin was produced by incorporating silane coupling agent onto the acrylic main chain by emulsion polymerization. After applying different emulsion polymerization processes, batch polymerization was selected to obtain the resultant resin. Thus finding the optimum conditions by investigating the parameters of monomer ratios, initiators, concentrations of initiators, temperature and time, the novel resin was synthesized. Water-dispersed silicone-acrylic resin was produced using butyl acrylate, butyl methacrylate, methyl methacrylate, 3-methacryloxypropyltrimethoxysilane and acrylic acid as a hydrophilic monomer. 2,2&#039 / -azobis[2-(2-imidazolin-2yl)propane]dihydrogen chloride as thermal initiator and t-butyl hydroperoxide / sodiummetabisulfite as redox couple initiator were selected as the best effective initiators for the production of silicone-acrylic resin. The reaction temperature of the preparation of silicone-acrylic resin was taken as 50&amp / #61616 / C maximum to prevent gelation and agglomeration. To understand the effect of silane coupling agent on the properties of the resin, a new resin was synthesized which did not contain any silane coupling agent and the properties of both resins were determined by FTIR spectroscopy, thermal analysis and mechanical tests. Their physical properties were also determined. The addition of 3-methacryloxypropyltrimethoxysilane to the main chain increased the hardness and the gloss values but slightly decreased the abrasion resistance value of the silicone-acrylic resin. All the samples showed superior flexibility. The produced polymer which contains silane coupling agent showed excellent adhesion properties on glass and metal plates.
92

Synthesis, Characterization And Electrical Properties Of Diazophenylene And Diazodiphenylene Bridged Co, Ni, Cu, Ce, And Er Phthalocyanine Polymers

Alkan, Cemil 01 September 2004 (has links) (PDF)
SYNTHESIS, CHARACTERIZATION, AND ELECTRICAL PROPERTIES OF DIAZOPHENYLENE AND DIAZODIPHENYLENE BRIDGED Co, Ni, Cu, Ce, AND Er PHTHALOCYANINE POLYMERS Alkan, Cemil M. Sc., Department of Polymer Science and Technology Supervisor: Prof.Dr. Leyla Aras Co- Supervisor: Prof.Dr. G&uuml / ng&ouml / r G&uuml / nd&uuml / z September 2004, 112 pages In this research, diazophenylene and diazodiphenylene bridged metal-phthalocyanine polymers were produced from diazonium salt of diaminophenylene/bensidin and pre-synthesized tetraamino metal phthalocyanines. Tetraamino metal phthalocyanine complexes of Co, Ni, Cu, Ce, and Er were obtained by reducing tetranitro metal phthalocyanine complexes synthesized from 3-nitrophthalic anhydride, urea, metal salt, and ammonium molybdate catalyst. Complexes and polymers were characterized by Fourier Transform Infrared Radiation (FTIR) and UV-Visible spectroscopies. X-Ray analysis showed that there were short range orientations in the polymers. Thermal analysis of the complexes and the polymers were done by differential scanning calorimetry and thermal gravimetric analysis at a heating rate of 10&amp / #61616 / Cmin&amp / #61485 / 1 under nitrogen atmosphere. Ash analysis was performed to determine the metal content of the polymers. Viscosity and ebullioscopy measurements of the soluble part of the polymers were carried out in THF at 25&amp / #61616 / C. Scanning electron microscopy were used for morphology investigations of the polymers. Four probe conductivity measurements showed that electrical conductivity of the polymers increased according to the metallic conductivity of the metal at the center of the phthalocyanine units. When doped with iodine, the polymer samples showed 104 fold increase in their conductivities. Current-Voltage (I-V) measurements showed that the polymers were optically sensitive and semiconductors. Electrochemical analysis of the soluble part of the polymers were determined in tributylamine perchlorite+dichloromethane mixture utilizing cyclic voltammetry (CV).
93

Effect Of Rigid Rod Molecular Structures On The Properties Of Regenerated And Virgin Polyethyleneterephtalate

Duru, C. Zeynep 01 September 2004 (has links) (PDF)
In recent years,the recycling of plastic waste incerased worldwide.The basic impetus for this increase is the public awereness regarding polltuion of the environment.Many different types of recycling processes are being used to reduce the use of raw materials and to reduce energy consumption.PET recycling is one of the most important recycling processes.addition of thermotropic liquid crystalline polymers has also become wide-spread in recent years to increase their mechanical properties and other selected properties.In this study,it is aimed to obtai a continous or discontinous fiber from the termotropic liquid crystalline copolyester and recycled PET blend.In this study X7G was used as a copolyester.In the polymer mixtures small amounts of liquid crystalline plymer phase resulted in significantr improvements in the mechanical properties of the fibers produced in the study.The blending method used gave an alost homogeneous poymer mixture which was unexpected tat needs further study to elaborate.The preliminary DSC,SEM, tensile testing and intrinsic viscosity measurements support this conclusion.The material obtained approached to fiber grade PET in terms of fiber forming properties which therefore can be used as a second grade fiber material.
94

Immobilization Of Tyrosinase In Polysiloxane/polypyrrole Copolymer Matrices

Arslan, Ahu 01 January 2006 (has links) (PDF)
Immobilization of tyrosinase in conducting copolymer matrices of pyrrole functionalized polydimethylsiloxane/polypyrrole (PDMS/PPy) were achieved by electrochemical polymerization. The polysiloxane/polypyrrole/tyrosinase electrode was constructed by the entrapment of enzyme in conducting matrices during electrochemical copolymerization. Maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were investigated for immobilized enzyme. Enzyme electrodes were prepared in two different electrolyte/solvent systems. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate on the enzyme activity and film morphology were determined. Temperature and pH optimization, operational stability and shelf-life of enzyme electrodes were also examined. Phenolic contents of green and black tea were determined by using enzyme electrodes.
95

Preparation And Characterization Of Hydroxyapatite Containing Acrylic Bone Cements

Basgorenay, Burcu 01 December 2004 (has links) (PDF)
Acrylic bone cements are one of the most important biomaterials used in orthopaedic surgery and dental applications to fill the cavities or provide mechanical interlock between prosthesis and the bone. Their biocompatibility can be increased by addition of different materials into the formulation, such as hydroxyapatite. Besides all the advantages, bone cements have several drawbacks including tissue necrosis, chemical necrosis, shrinkage of the cement and aseptic loosening. Therefore painstaking research and study are carried out on development of new formulations to improve mechanical and thermal properties as well as biocompatibilities. In this study, bone cements with different compositions were prepared and new formulations were examined to improve mechanical properties and to reduce maximum curing temperature. It was observed that addition of hydroxyapatite, while keeping polymer-to-monomer ratio constant at 2.0, decreased curing temperature and increased compressive strength about 11% (Group-C) when hydroxyapatite addition was 12%. Further addition of hydroxyapatite destroyed homogeneity of the cement dough and made it difficult to handle. The composition which contains 8% hydroxyapatite was chosen as the optimum composition in respect of mechanical properties with 102.62&deg / C curing temperature. In order to decrease the curing temperature ammonium nitrate this gives endothermic reactions with water, was added into the formulations. Addition of 0.5 g NH4NO3 decreased curing temperature from 94&deg / C to 79.3&deg / C while compressive strength kept in acceptable range with 95.99 MPa. Experiments demonstrated that the proposed formulation is acceptable for workability, homogeneity, mechanical strength and thermal properties. Further studies especially on curing temperature and biocompatibility should be achieved.
96

Characterization Of Conducting Polymers Of Ester Linkage Containing Thiophene Derivatives Via Mass Spectroscopy

Aslan, Evren 01 December 2004 (has links) (PDF)
ABSTRACT CHARACTERIZATION OF CONDUCTING POLYMERS OF ESTER LINKAGE CONTAINING THIOPHENE DERIVATIVES VIA MASS SPECTROSCOPY Aslan, Evren M.Sc., Department of Chemistry Supervisor: Prof. Dr. Levent Toppare Co-Supervisor: Prof.Dr. Jale Hacaloglu December 2004, 86 pages In order to investigate the thermal and structural characteristics of terepthalic acid bis-(2-thiophen-3-yl-ethyl)ester (TATE), decanedioic acid bis-(2-thiophen-3-yl- ethyl) ester (DATE) and octanoic acid 2-thiophen-3-yl-ethyl ester (OTE), their corresponding homopolymers, copolymers with thiophene and polythiophene, pyrolysis mass spectrometry technique was utilized. The results were discussed in detail considering the effects of spacer group in between ester linkages. Thermal Gravimetry Analysis was used to investigate the weight loss for polymers and monomers. Conductivities of samples were measured by four-probe technique. It was found that when the ester linkages contain hydrocarbon chains, the growth of polymer occurred through both 2 and 5 positions. On the other hand, when the ester linkages contain more rigid groups such as phenyl, steric hindrance inhibited the growth of the polymer through 2- position and polymerization proceeded via coupling of thiophene moieties mainly at 5-position yielding a polymer with lower conductivity. Though the structure of P(OTE) is inherently different than P(DATE) and P(TATE) extent of network structure is also quite low for this polymer compared to PTh. Similar thermal characterizations were recorded indicating that thermal units were not significantly affected by the presence of TATE, DATE or OTE for all copolymer samples.
97

Structural And Thermal Characterization Of Polymers Via Pyrolysis Mass Spectrometry

Argin, Emir 01 October 2005 (has links) (PDF)
In the first part of this study, the structtural and thermal characterization of electrochemically and chemically polymerized poly(paraphenylene vinylene), (PPV), have been investigated by direct pyrolysis mass spectrometry. Thermal characteristics, and degradation products of electrochemically prepared poly(paraphenylene vinylene). Pyrolysis study indicated that thermal decomposition of PPV occurs at least two steps. The first being due to the loss of supporting electrolyte present and the second being decomposition of the polymer backbone.In the second part of the study, direct insertion probe pyrolysis mass spectrometry (DIP-MS) technique was used to perform the thermal and the structural characterization of electrochemically synthesized polyaniline,PANI. The effect of dopant used (HCL, HNO3 and H2SO4) and synthesis period have been investigated. For all the samples studied, three main thermall degradation stages have been recorded / evolution of low molecular weight species, evolution of dopant based products and evolution of degradation products of polymer.
98

Hydrogel From Template Polymerization Of Methacrylic Acid And N-vinylpyrollidone And Polyethyleneoxide

Erdem, Yelda 01 April 2005 (has links) (PDF)
ABSTRACT HYDROGEL FROM TEMPLATE POLYMERIZATION OF METHACRYLIC ACID AND N-VINYLPYRROLIDONE AND POLYETHYLENEOXIDE Yelda, Erdem Department of Polymer Science and Technology Supervisor : Prof. Dr. Teoman Tin&ccedil / er April 2005, 53 pages This theses covers the preparation and the characterization of a rigid hydrogel from N-Vinyl pyrrolidone-methacrylic acid (VP-MAA) monomers and polyethyleneoxide (PEO) polymer. Hydrogels are hydrophillic natured three dimensional networks which can swell in the presence of water. The VP-MAA-PEO hydrogel was obtained by template polymerization which can be defined as a method of polymer synthesis in which specific interactions consists of the preparation of a polymer (daughter polymer) in the presence of a macromolecular compound (template polymer). The hydrogel of VP-MAA-PEO was synthesized by using azobisisobutyronitrile (AIBN) as the initiator, tetrahydrofurane (THF) as the solvent and the temperature of the system was kept constant at 50&ordm / C. Two kinds of VP-MAA-PEO hydrogels were prepared. The only difference between them were their solubilities in water. This difference is due to different crosslinking agent weight percentages of ethylene glycol dimethacrylic (EGDMA) to make the hydrogel water insoluble. The comparison of two hydrogels were carried by swelling behaviors at different pH values and different temperatures. Thermal stability of these two hydrogels were also examined by differential scanning calorimetry (DSC), spectroscopic properties were compared by using FTIR spectrometer and morphological studies were analyzed by using scanning electron microscope (SEM).
99

Nanocomposites Based On Recycled Poly(ethylene Terepthalate)

Tolga, Asli 01 July 2005 (has links) (PDF)
In this study, the effects of glycol type, organoclay type and concentration on the final properties of nanocomposites based on recycled poly(ethylene terephthalate) was investigated. For this purpose, first recycled PET was glycolysed and after that unsaturated polyester-montmorillonite nanocomposites were synthesized by using three different types of glycols (i.e. ethylene glycol (EG), propylene glycol (PG) and diethylene glycol (DEG)). As the first step, all the compositions were prepared by Cloisite 30B type of clay, and then for comparison of clay type, nanocomposites containing 1 wt. % of Cloisite 15A and Cloisite 25A type of clay were also synthesized. Morphological and mechanical analyses were performed for the characterization of the nanocomposites. According to the results of XRD analysis, for all glycol types maximum intercalation was observed in Cloisite 30B containing samples. Exfoliated structures were obtained in the samples containing EG at 1 wt. % Cloisite 30B content and DEG at 3 wt. % Cloisite 30B content. Mechanical tests showed that, for all properties, glycol type is the most effective experimental parameter. DEG based samples are the most flexible whereas PG based samples are the least flexible. EG and DEG based samples give maximum tensile strength and tensile modulus values at 1 wt. % clay loading. Samples prepared by DEG exhibited maxima in both flexural strength and modulus at 1 wt. % clay content. With respect to the organoclay type, Cloisite 30B containing samples gave the highest compatibility with the unsaturated polyester matrix as indicated by the tensile test results. Organoclay type and content had no positive effect on the impact strength. Clay particles acted as stress concentrators and lowered the impact strength.
100

Preparation And Characterization Of Acrylic Bone Cements

Endogan, Tugba 01 September 2005 (has links) (PDF)
Acrylic bone cements are used in dentistry and orthopedic surgery to fix prosthetic devices into the bone. Bone cements transfer and distribute the applied load and increase the load-carrying capacity of the prosthesis/cement/bone system with the help of mechanical bonding between the device and the bone. In spite of all their advantages, bone cements have several drawbacks such as insufficient mechanical properties, high exothermic polymerization temperature, release of monomer to the environmental tissue and loosening of implant. Studies are being carried out to improve bone cement formulations with low curing temperature, good mechanical properties and good biocompatibility. In this study, bone cements with different compositions were prepared by using poly(methyl methacrylate) (PMMA) microspheres, barium sulphate (BaSO4) radiopaque agent, inorganic hydroxyapatite (HA) particles and 1-dodecyl mercaptan (DDM) chain stopping agent. Mechanical and thermal properties of the prepared bone cements were examined. When 8% hydroxyapatite was added into the formulation, both tensile and compressive strengths were increased and curing temperature was decreased. Addition of 13% BaSO4 caused 0.98% and 10.29% decrease in tensile and compressive strength values, respectively. Addition of 1%, 2% and 3% DDM, relative to the amount of methyl methacrylate monomer, decreased the maximum temperature from 101.78&deg / C to 91.80&deg / C, 78.38&deg / C and 71.35&deg / C, respectively. All compositions of the prepared bone cements fulfilled the minimum compressive strength (70 MPa) requirement and the minimum curing temperature was obtained as 71.35&deg / C. In order to have optimum desired properties, further studies to improve biocompatibility, mechanical and thermal properties of bone cements are needed.

Page generated in 0.0785 seconds