• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 11
  • 11
  • 11
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric Studies On Cell Flotation Of Mazidagi Phosphate Rock

Oztin, Elif Z 01 September 2003 (has links) (PDF)
Phosphate is one of the essential minerals for all living organisms. It has to be supplied to the soil in order for plant growth. In Turkey, most of the soils lack phosphate mineral. Although this can be overcome by the use of phosphate fertilizers, in Turkey there are no phosphate mines being utilized / and this brings about the need to import phosphate rock and phosphate fertilizers. The estimated phosphate rock reserve of Turkey is around 300 million tons, but it cannot be utilized since no economical method of upgrading has been proved to work yet. The aim of this study has been two-fold / to determine the effects of several parameters on the cell flotation of Mardin-Mazidagi phosphate rock and to increase the grade of the product above 30% P2O5 content with a reasonable recovery rate, so that it could be used commercially. Phosphate rock upgrading was made by using flotation in a cell. There are many factors affecting the recovery and grade of the product such as, particle size, pulp pH, collector volume, acid and collector conditioning times and temperature. Phosphate rock samples used contained 14% P2O5, 43% CaCO3 and 1% SiO2 with a CaO/P2O5 ratio of 3.1. Due to the low silica content, one-stage flotation was made. In the experiments, effects of the important parameters were tested at constant pulp density (10% solids by weight). Particle sizes were between 53 m and 150 m, while the pH values were kept between 5,0 - 6,5 using amounts of acid within the range of 6 - 19 kg H3PO4/ton of rock. The collector (mixture of kerosene and oleic acid in 1:3 volumetric ratio) was used in the range of 0,6 ml (0,96 kg collector/ton rock) and 5,4 ml (8,64 kg collector/ton rock). Acid and collector conditioning times were changed between 10-110 s and 10-80 s, respectively. The temperature range was between 15-35 &deg / C. At the end of the parametric studies a grade of 36% P2O5 with a recovery of 93% could be obtained.
2

Sorption Of C8 Aromatics On Mcm-41

Ali, Baraa Abbas 01 May 2010 (has links) (PDF)
The discovery of MCM-41 materials have attracted substantial research attention due to the remarkable features of these materials including a narrow pore size distribution, high surface area, high pore volume, and high thermal and hydrothermal stability, as well as, parallel hexagonal arrangement of uniform cylindrical pores without pore channel intersection. These well-defined structural characteristics make them ideal media to study the adsorption, catalysis, ion exchange, and separation. MCM-41 sample used in this study was synthesized in (Chemical Engineering Department, Gazi University). The MCM-41 was synthesized by using sodium silicate (0.0705 mol, 27% Silica) as a source of silica and surfactant cetyltrimethylammoniumbromides (CTMABr) (0.036 mol) as template. A characteristic feature of this direct hydothermal synthesis was relatively long synthesis time (96 hour at 120&deg / C). MCM-41 was characterized by using XRD, and nitrogen physisorption analysis techniques. The characteristic peak in the low-angle region corresponding to 2&amp / #952 / = 2.406&deg / was obtained for MCM-41 sample indicating high structural ordering of the MCM-41sample. The BET, surface area was found as (492.2 m /g), with an average pore diameter (25 &Aring / ). In this study the sorption equilibrium of C aromatics (p-xylene, m-xylene, o-xylene, and ethylbenzene ) on MCM-41 at different temperatures (30&deg / C, 50&deg / C, 65&deg / C, 80&deg / C) was investigated by using an automated gravimetric electrobalance system. It was found that the amounts of each sorbate (p-xylene, m-xylene, o-xylene, and ethylbenzene) adsorbed at a given relative pressure on MCM-41 decreased when the temperature of the adsorption isotherms increases. The adsorption isotherms were type V, according to IUPAC isotherm classification due to the mesoporous nature of the MCM-41 sample. The hysteresis are associated with condensation-evaporation within a narrow distribution of mesopores with each adsorption isotherms. It was shown that as the temperature for the adsorption isotherms increases the size of hysteresis decreases for each sorbate. The volume of sorbates (V ) were obtained from the mass uptake at maximum relative pressure by taking the normal liquid density at the adsorption temperature for all sorbates. These values are significantly lower than that obtained from low-temperature nitrogen isotherm. The reason of this difference is that the density of the adsorbed phase is unlikely to be exactly the same as that of the liquid adsorptive and curvature of some isotherms at high relative pressure leads to uncertainty in the location of the upper limit for pore filling.
3

Low Temperature Photocatalytic Oxidation Of Carbon Monoxide Over Palladium Doped Titania Catalysts

Yetisemiyen, Pelin 01 September 2010 (has links) (PDF)
The room temperature photocatalytic oxidation of carbon monoxide in excess air was examined over silica/titania and 0.1%palladium/silica/titania catalysts under UV irradiation. The experiments were conducted in batch re-circulated reactor with the initial 1000 ppm carbon monoxide in air and 0.5 g catalyst charge and the conversion of carbon monoxide to carbon dioxide was followed by FT-IR spectro-photometer. The change in gas composition in dark and under 36 Watts of UV irradiation exposed to a catalyst area of 12.4 centimeter square indicated both adsorption of carbon monoxide and conversion of carbon monoxide to carbon dioxide over the catalyst samples. The effect of catalyst composition (silica/titania) ratio and the presence of palladium oxide were investigated. The catalyst samples were synthesized by sol-gel technique and all samples were hydrothermally treated before calcination in air. The catalyst samples were characterized by XRD and nitrogen adsorption techniques. XRD results indicated that titania is comprised of pure anatase phase and palladium oxide preferantially dispersed over titania. BET surface area of the samples were observed to increase with silica loading and the BJH results showed isotherms of Type V v with H2 hysteresis loops. The highest carbon monoxide adsorption rate constant was achieved with pure silica with the highest surface area. Photocatalytic activity measurements indicated that carbon monoxide in excess air can be successfully oxidized at room temperature over the titania photocatalyts. Higher physisorption was observed over higher silica containing samples and higher oxidation activity was observed with increasing titania/silica ratio. The optimum titania/silica ratio was determined by the titania content and surface area of catalyst. The activity tests were also indicated that the addition of palladium oxide phase synergistically increased the adsorption and oxidation activity of the catalysts.
4

Photocatalytic Antimicrobial And Self-cleaning Properties Of Titania-silica Mixed Oxide Thin Films

Korkmaz Erdural, Beril 01 November 2012 (has links) (PDF)
In this study photocatalytic antibacterial and self-cleaning activities of TiO2-SiO2 thin films as a function of TiO2/SiO2 ratios were investigated. TiO2-SiO2 mixed oxides were synthesized by sol-gel method and coated over soda-lime glass plates by dip coating technique. Escherichia coli was used as a model microorganism for the photocatalytic antibacterial tests. Degradation rate of methylene blue (MB) molecules was used to characterize photocatalytic self-cleaning activities of thin film surfaces. The maximum antibacterial activity was achieved over 92 wt% SiO2 containing thin films. However, when the SiO2 content exceeds 92 wt%, photocatalytic antibacterial activity decreased considerably, which was explained by the dilution of TiO2 phase and inaccessibility of TiO2. Increase in photocatalytic antibacterial activity was attributed to increases in the relative surface area, roughness, hydroxyl (OH-) groups and bacterial adhesion. The favored bacterial adhesion enhanced direct contact of bacteria with TiO2 particles and surface reactive oxygen species. The highest initial decomposition rate of MB was obtained for 60 wt% SiO2 and the activity decreases as SiO2 concentration increases. The increase in photocatalytic activity by the SiO2 addition can be explained by the increase of the amount of MB per unit area of TiO2-SiO2 thin films. Different adsorption capability of thin films against MB molecule and E. coli cell was explained as the first reason why the antibacterial and self-cleaning activities reached their maximum values at different SiO2 ratios. The second reason could be related with the different control mechanisms of self-cleaning and antibacterial activities by different textural and surface properties.
5

Development Of A Three Way Catalytic Converter For Elimination Of Hydrocarbons, Carbon Monoxide And Nitric Oxide In Automotive Exhaust

Kandilli, Nur 01 September 2010 (has links) (PDF)
In this work, slurries of powder catalysts are washcoated on 22 mm diameter and 13 mm height cordierite monoliths. CeO2-ZrO2 (CZO) and CeO2-ZrO2- Al2O3 (CZAO) mixed oxides are synthesized by co-precipitation and sol-gel methods respectively, to be used as support materials of Pd and Rh metals. Metal loaded CZO is mixed with gamma phase alumina. Powder catalysts and their slurries are characterized by XRD, BET, ICP-MS and the monolithic catalysts are imaged by SEM. Catalytic activities of monolithic catalysts are tested in dynamic test system which is computerized and basically composed of gas flow control and conditioning units, split furnace, quartz reactor, mass spectrometer and CO analyzer. Gas mixture containing CO, C3H6, C3H8, NO, H2, O2, CO2, SO2, H2O and N2 is used to simulate the exhaust gas of gasoline vehicles. O2 is oscillated at 1 Hz frequency around the stoichiometric condition. Monolithic catalyst in the reactor is heated and cooled between 150 &ordm / C and 600 &ordm / C. Gas composition data from massspectrometer and CO analyzer and temperature data from thermocouple at the monolith entrance, are converted to conversion versus temperature graphs. Results of 26 activity tests are compared. Catalyst containing coimpregnated CZO support material with metals, showed the lowest loss of catalytic performance after exposure to SO2 during activity tests. Catalyst containing separately impregnated CZO support material, showed the highest resistance against thermal aging at 900 &ordm / C and 1000 &ordm / C, and even improved catalytic activity after aging. These catalysts showed higher resistances against the applied procedures than the commercial catalyst.
6

Investigation Of Electromigration And Stress Induced Surface Dynamics On The Interconnect By Computer Simulation

Celik, Aytac 01 March 2011 (has links) (PDF)
Purpose of this work is to provide a comprehensive picture of thin film (interconnect) and solid droplet surface evolution under the several external applied forces with anisotropic physical properties so that one can eventually be able to predict main reasons and conditions under which stability of surface is defined. A systematic study based on the self-consistent dynamical simulations is presented for the spontaneous surface evolution of an thin film and isolated thin solid droplet on a rigid substrate, which is driven by the surface drift diffusion induced by the anisotropic diffusivity, the anisotropic capillary forces (surface stiffness) and mismatch stresses under electron winding. The effect of surface free energy anisotropies (weak and strong (anomalous)) on the development kinetics of the Stranski-Krastanow island type morphology are studied. Although, various tilt angles and anisotropy constants were considered during simulations, the main emphasis was given on the effect of rotational symmetries associated with the surface Helmholtz free energy topography in 2D space. The investigations of dynamics of surface roughness on concurrent actions of the appliedelasto- and electro- static fields clearly indicate that applied misfit stress level is highly important effect on resultant surface form which may be smooth wave like or crack like. The droplet simulations revealed the formation of an extremely thin wetting layer during the development of the bell-shaped Stranski-Krastanow island through the mass accumulation at the central region of the droplet via surface drift-diffusion. The developments in the peak height, in the extension of in the wetting layer beyond the domain boundaries, and the change in triple junction contact angle, one clearly observes that these quantities are reaching certain saturation limits or plateaus, when the growth mode turned-off. Islanding differences for weak anisotropy constant levels and the strong (anomalous) anisotropy constant domains are discussed.
7

Kinetics Of Methyl Lactate Formation Over The Ion Exchange Resin Catalysts

Akbelen Ozen, Serap 01 April 2004 (has links) (PDF)
iv The recovery of lactic acid from its dilute aqueous solutions is a major problem. The ester of lactic acid, namely, methyl lactate has a wide range of applications. The esterification of an aqueous solution of lactic acid with methanol is a reversible reaction. As excess of amount water is present in the reaction mixture, the conversion is greatly restricted by the chemical reaction equilibrium limitations. In this study the esterification kinetics of lactic acid with methanol both in the absence and presence of an ion exchange resin as a heterogeneous acid catalyst was investigated with isothermal batch experiments between 40 - 70 0 C and at atmospheric pressure. Self-polymerization of lactic acid was enlightened by considering the hydrolysis reaction of lactoyllactic acid at the reaction temperatures and at various initial concentrations. Both homogeneous and heterogeneous reaction rate constants were evaluated. Methyl lactate process development was also investigated. The process was based on the recovery of 10% lactic acid by reaction with methanol in a absorption column using ion-exchange resin Lewatit SPC-112 H+. The effect of various parameters including lactic acid concentration or reactant molar ratio, lactic acid feed flow rate, methanol and inert carrier rate on reactor performance were studied. The reaction of methyl lactate formation over the ion exchange resin catalyst was observed to be slower than the mass transfer rate whereas mass transfer of methanol in gas phase was the limiting step for methanol transfer to the liquid mixture. Mass transfer of water from liquid phase to the gas phase was controlled by the mass transfer resistance of liquid phase. Thus, it can be concluded that the counter-current gas-liquid reactors with acidic solid catalysts can be used as simultaneous reaction and separation equipment.
8

Determination Of Contact Angles Of Powders By Capillaric Dewatering Of Filter Cakes

Eratak, Deniz Ozlem 01 January 2005 (has links) (PDF)
Solid-liquid contact angle is an important parameter in many particulate processes of the mineral, ceramic and chemical industries. In particular, modification of the contact angle through surface active agents plays a crucial role in froth flotation of minerals. In the case of flat solid surfaces, direct measurement of the contact angle is possible. However, such flat surfaces can not be obtained with finely divided solids typically encountered in flotation applications. Then, indirect methods based on powder beds as thin layers of powders deposited on glass plates or packed columns are used for the determination of apparent contact angles. This thesis presents an alternative novel method based on the capillaric dewatering of filter cakes for the measurement of the receding contact angle and correlates the contact angles measured as such with column wicking and micro-flotation test results of zircon and rutile mineral particles. The experimental procedure is simple and fast. The results have proven that the proposed method is reliable and give a good measure of the contact angle in the absence and presence of surface active non-wetting agents.
9

Production And Characterization Of Activated Carbon From Hazelnut Shell And Hazelnut Husk

Cuhadar, Cigdem 01 June 2005 (has links) (PDF)
In this study, the pore structures and surface areas of activated carbons produced from hazelnut shell and hazelnut husk by chemical activation technique using phosphoric acid (H3PO4), at relatively low temperatures (300, 400 and 500oC), were investigated. Raw materials were impregnated with different H3PO4 solutions of 30%, 40%, 50% and 60% by weight. To produce activated carbon, acid impregnated samples were heated / at a heating rate of 20 oC/min to the final carbonization temperature and held at that temperature for 2 hours. The volume and surface areas of mesopores (2-50 nm) and BET surface areas of the samples were determined by N2 gas adsorption technique at -195.6oC. The pore volume and the area of the micropores with diameters less than 2 nm were determined by CO2 adsorption measurements at 0oC by the application of Dubinin Radushkevich equation. N2 (BET) surface areas of the hazelnut shell and hazelnut husk based activated carbons were in the range of 242-596 m2/g and 705-1565 m2/g, respectively. CO2 (D-R) surface areas of the hazelnut shell and hazelnut husk based activated carbons were in the range of 433-576 m2/g and 376-724 m2/g, respectively. The highest BET surface area was obtained as 596 m2/g among hazelnut shell based samples (HS 60.4 / shell impregnated with 60 wt.% H3PO4, carbonized at 400 &ordm / C) and as 1565 m2/g among hazelnut husk based samples (HH 40.4 / husk impregnated with 40 wt.% H3PO4, carbonized at 400 &ordm / C). Hazelnut shell based activated carbons were mainly microporous while hazelnut husk based ones were mesoporous.
10

Study Of Sorption Of Alcohols On High Silica Zsm-35

Babuccuoglu, Yurdaer 01 January 2007 (has links) (PDF)
This study investigated the equilibrium sorption capacities and rates of sorption of some alcohols on Na- and/or H- form of ZSM-35 at different temperatures by gravimetric method using an electrobalance. The alcohols studied were methanol, ethanol, propan-1-ol, propan-2-ol, n-butanol. The ZSM-35 sample used in sorption experiments resulted from a study for synthesis of high silica ZSM-35 zeolite. This ZSM-35 sample was called as NaZSM-35. The influence of ion-exchange on the sorption capacity and kinetics was investigated by converting NaZSM-35 into H-form by the ion exchange method. In this method, a sufficient amount of ZSM-35 sample (200-250 mg) was mixed with 25 ml of 1 N NH4Cl solution for 24 hours at room temperature. This procedure was repeated until no Na+ was detected by a Flame Photometer. After the ion exchange was completed , the sample was washed with deionized water, filtered, dried and recalcined for the removal of the ammonia and this sample was denoted as HZSM-35. The highest sorption capacity (cm3/g) was observed for methanol on HZSM-35 / 0.1656 cm3/g and the lowest sorption capacity was observed for propan-2-ol at NaZSM-35 / 0.003 cm3/g. Sorption of methanol and ethanol were very rapid. The sorption capacities of other three alcohols / propan-1-ol, propan-2-ol and n-butanol, were lower and they had slower rates of sorption. HZSM-35 had greater limiting sorption capacity than NaZSM-35 for propan-1-ol, propan-2-ol and n-butanol at all temperatures.

Page generated in 0.0347 seconds