• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mineralogy, petrology and geochemistry of Caradocian phosphorites, N. Wales, U.K

Saigal, Neeta January 1985 (has links)
Caradocian phosphorite nodules sampled from the Powys county of N. Wales, U.K. have been investigated in order to characterize the deposit geochemically, mineralogically and petrographically and to evaluate their mode of formation. Nodules are the main form of phosphorite although phosphatized organic fragments and oolitic grains are also present. On the basis of petrographio characteristics, nodules are grouped into two types; Type I nodules (with abundant organic material) and Type II nodules (with abundant clay minerals). Mineralogical compositions of the phosphorite nodules reflect varying degrees of dilution of the phosphate material, francolite, by authigenic and detrital minerals. Examination with the scanning electron microscope of freshly fractured surfaces of nodules suggests that the apatite formed authigenically as a direct chemical precipitate. Surfaces of abundant siliceous spicules and other organic fragments as well as some minerals appear to be favoured sites for apatite nucleation. Geochemical studies showed significant impoverishment of lattice elements and enrichment of non-lattice elements in both types of nodules. Chemically the phosphorite nodules may be described in terms of four major components: SiO2, CaO, P2O5 and F. The average concentrations of trace elements present in these nodular phosphorites were compared with an average concentration in marine shales. The enrichment and/or depletion largely suggested precipitation from sea water. The proposed model of phosphorite formation involves inorganic (or biochemical) precipitation of apatite within pore waters of anoxic sediments and subsequent concentration of the apatite by physical processes. Oxidation of organic material during sulphate reduction is the main source of phosphate. This is supported by the very light delta13c isotopic composition of structural carbonate present in the francolites. These studies have also shown that these phosphorites have undergone differential leaching during weathering processes with the development of secondary phosphate: minerals, decarbonation of francolite and removal of many major and minor elements.

Page generated in 0.0558 seconds