• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QM/EFP Models Beyond Polarizable Embedding

Claudia I Viquez-Rojas (8768628) 27 April 2020 (has links)
The Effective Fragment Potential (EFP) is a quantum-mechanical based model used to describe non-covalent interactions of small molecules or fragments. It can be used along with fully <i>ab initio</i> methods to study the electronic properties of complex systems, such as solvated chromophores or proteins. For this purpose, the system is divided into two regions: one modeled with quantum mechanics and the other with EFP. The interaction between the QM region and the effective fragments has popularly been described through electrostatics and polarization only. This thesis focuses on the development of the QM/EFP exchange-repulsion term, as well as the evaluation of the dispersion term and a charge-penetration correction. The goal of is to determine how these terms can increase the accuracy of QM/EFP calculations without an increase in their computational cost.
2

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF HYDROPHOBIC ASSOCIATION AND ION AFFINITY FOR MOLECULAR OIL/WATER INTERFACES

Andres Urbina (12464403) 27 April 2022 (has links)
<p>  </p> <p>Experimental and computational techniques are used to study physico-chemical phenomena occurring in water on which hydrophobic interactions play a role. In particular, hydrophobic self-aggregation, including host-guest binding, and the affinity of ions to oil/water interfaces are investigated. Raman multivariate curve resolution (Raman-MCR) spectroscopy was the experimental technique used to unveil intermolecular interactions through the analysis of solute-correlated (SC) vibrational spectra. Molecular simulations, including molecular dynamics (MD) simulations, quantum-mechanical calculations, or a combination of both, were carried out to assist with the molecular-level interpretation of the experimental SC spectra.</p>

Page generated in 0.023 seconds