• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Actions of neuropeptides on mouse spinal neurones in culture

McCarthy, Peter William January 1985 (has links)
1] Spinal cords from mouse embryos were successfully prepared and maintained in primary dissociated cell culture, for periods in excess of 10 weeks. 2] Stable intracellular recordings were made from spinal neurones which had been sustained in these cultures. 3] Experiments were made on these spinal neurones using various amino acids and peptides. Solutions of these compounds were discretely applied by pressure ejection. 4] L-Glutamate, GABA and glycine evoked responses which appeared the same as those documented previously. 5] Ethylene-diamine did not evoke a response from the spinal neurones tested. 6] Only a small percentage of the spinal neurones responded to met5- and leu5 - enkephalin, FMRFamide, neurotensin and glycyl L-glutamine. Supplementing the cultures with tissue from other organs did not increase the percentage of spinal neurones which were capable of responding to peptide. 7] Met5 -enkephalin and leu5 -enkephalin each evoked responses from the spinal neurones. 8] The enkephalin-evoked depolarizations accompanied by an increased input resistance were apparently voltage dependent. These responses were abolished at potentials more negative than -90mV and did not invert under normal recording conditions. 9] The enkephalin-evoked depolarizations associated with a decreased input resistance had extrapolated inversion potentials of -20mV. No voltage dependence was seen. 10] Enkephalins also evoked responses which had an inversion potential close to the resting membrane potential. These were accompanied by a decreased input resistance and were not desensitized by prolonged application of peptide. 11] None of these responses showed obvious desensitization with prolonged application, however, they were all attenuated by naloxone. 12] Met5 -enkephalin was apparently more potent than leu5 -enkephalin on a small number of neurones. Furthermore, met5 -enkephalin application, during the weaker response from those neurones to leu5 -enkephalin, evoked a attenuated response. 13] FMRFamide evoked two responses from these spinal neurones. These responses were seen separately and mixed. In the latter case they were referred to as biphasic responses. 14] The depolarizing response to FMRFamide was accompanied by an increase in input resistance. Potassium had some involvement in these responses. 15] The FMRFamide responses which were accompanied by a decreased input resistance showed a great variety of inversion potentials between neurones. These actions were dependent upon sodium and chloride ions. 16] Enkephalin and FMRFamide, when applied separately to the same spinal neurone, did not evoke the same response. 17] Responses evoked by neurotensin were hyperpolarizations associated with a decreased input resistance. These responses were dependent upon potassium and independent of chloride ions. 18] Glycyl L-glutamine evoked two types of hyperpolarizing response from the spinal neurones. These could appear separately or combined. 19] The faster responses to glycyl L-glutamine were apparently dependent on potassium ions. 20] The slower responses to glycyl L-glutamine were apparently insensitive to changes in extracellular potassium or chloride. However, these responses were sensitive to intracellular injection of chloride ions. 21] At concentrations of peptide which evoked a response from other spinal neurones, none of the peptides produced any measurable modulation of amino acid-evoked responses.

Page generated in 0.0712 seconds