• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development Of Recombinant Vaccines Composed Of Plpe And Omph From Pasteurella Multocida A:3

Okay, Sezer 01 December 2011 (has links) (PDF)
Pasteurella multocida serotype A:3 is a gram-negative bacterial pathogen which is one of the causative agents of shipping fever in cattle. In this study, ompH and two fragments of plpE gene (plpEN and plpEC) were cloned from the genomic DNA of P. multocida P-1062 (ATCC 15743, serotype A:3) and plpEN-ompH and plpEC-ompH fusions were constructed. In vitro expression of the genes was shown in HEK-293 cells. Later, full-length plpE gene was cloned and the recombinant proteins were expressed in E. coli and purified. Three DNA vaccine formulations, namely pCMV-ompH, pCMV-plpEN-ompH and pCMV-plpEC-ompH and five recombinant protein based vaccines, PlpEN-OmpH, PlpEC-OmpH, OmpH, PlpEC and PlpE were generated. Recombinant proteins were formulated with at least one of the adjuvants: alum, CpG, alum-CpG, oil based and oil based-CpG. BALB/c mice were immunized with these vaccine formulations and their sera were used for the evaluation of antibody and serum IFN-&gamma / titers. Protective capacities of the vaccines were also evaluated via challenge of mice with 10 LD50 of P. multocida A:3. DNA vaccines induced immune responses, but did not provide protection. All protein vaccine formulations increased antibody levels and CpG containing formulations enhanced serum IFN-&gamma / titers. 100 &micro / g of PlpEC-OmpH protein adsorbed on alum adjuvant conferred 40% protection while no protection was obtained with PlpEN-OmpH. Next, the effects of CpG, or its alum and oil based combinations as adjuvants were investigated on PlpEC-OmpH mediated protection. The vaccine formulation composed of PlpEC-OmpH and oil based-CpG adjuvant conferred 100% protection. Finally, the mice were vaccinated with recombinant OmpH, PlpEC and PlpE formulated with oil based-CpG adjuvant. OmpH, PlpEC and PlpE formulations provided 50%, 60% and 100% protection, respectively. These findings implicated that recombinant PlpE and PlpEC-OmpH fusion proteins when formulated with oil based-CpG adjuvant are potent acellular vaccine formulation candidates against shipping fever.
2

Analysis Of Cross-immune Reaction Between Strains Of Bordetella Pertussis

Iscan, Elvin 01 December 2009 (has links) (PDF)
Bordetella pertussis is the causative agent of whooping cough which is a worldwide acute respiratory disease that predominantly involves infants. Whooping cough is one of the ten most common causes of death from infectious diseases worldwide. The increased coverage of the primary pertussis vaccination (DaBT-IPA-Hib) decreased the incidence of disease in Turkey dramatically. However, in spite of the incidence decline, the circulation of B. pertussis has not yet been eliminated, and a change in the clinical spectrum and age-related incidence of the disease has been observed. On the other hand, in view of the moderate changes that have been observed in the genomic sequences of certain virulance factors over time, there are concerns about the gradual loss of the efficacy of the current pertussis vaccines as a result of antigenic drift and continuous selection of the least vaccine-sensitive clones. Proteomics deals with whole protein content (proteome) of cells as a function of space and time. Gel-based approach in proteomics involves two dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting (PMF) employing matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS). Immunoproteomics which is a combination of gel based proteomics and Western blot analysis determines tumor-specific antigens as well as immunoreactive proteins of pathogens by combining proteomics with Western blot technique. Although immunoproteomics is a rather new research tool, it has been quite effective to determine the virulence factors of various pathogenic microorganisms. The present study aims at comparing immunoproteome of the standard B. pertussis strain &ldquo / Tahoma I&rdquo / with those of two other strains, namely &ldquo / Saadet&rdquo / and &ldquo / Nursel&rdquo / , which are the local isolates that have been preferred as the vaccine strains for many years in our country for their ability to provide a better protection. Of a total of 38 immunogenic proteins identified, 14 were shown to be the novel antigens for B. pertussis. Among 14 proteins, one was detected as immunogenic in only Tohama I strain where two proteins were specific for Nursel strain. Among the strains compared, Saadet strain had the highest antigenic variety, than the others.
3

High-level Expression Of Hepatitis B Surface Antigen In Pichia Pastoris, Its Purification And Immunological Characterization

Selamoglu, Hande 01 November 2009 (has links) (PDF)
Hepatitis B virus (HBV), which belongs to the family Hepadnaviridae, is responsible for acute and chronic hepatitis. The vaccines presently used to immunize patients against HBV are recombinant subunit vaccines consisting of viral surface antigens (S protein). However, they are expensive and their use is limited in poor countries. For that reason, HBV remains an important worldwide health problem. Of the 2 billion people who have been infected with the HBV, more than 350 million have chronic (lifelong) infections, who face increased risk of developing cirrhosis and hepatocellular carcinoma. In this study, high-level expression of recombinant Hepatitis B surface Antigen (rHBsAg), PreS2-S was achieved in the methylotrophic yeast, Pichia pastoris. For this aim, a single copy of HBV M gene (PreS2-S) was inserted at the downstream of the alcohol oxidase (AOX1) promoter of the pPICZA vector. rHBsAg protein could then be expressed intracellularly by induction with methanol. High cell density fermentation was followed by chromatographic separation to obtain pure rHBsAg. Humoral response after immunization with the purified protein was observed in mice using commercial Hepatitis B surface antigen kits. It was verified by the atomic force microscopy that rHBsAg has been produced in the desired conformation.
4

Assessment Of Immune Protective Capacity Of The Recombinant Iron-superoxide Dismutase (fesod) From Bordetella Pertussis

Apak, Aycan 01 December 2011 (has links) (PDF)
Whooping cough (pertussis) is a highly contagious acute respiratory disease caused by the strict human pathogen Bordetella pertussis, a gram-negative coccobacillus. The worldwide mass-vaccination was started in 1940s and to date, a number of whole-cell (Pw) and acellular pertussis vaccine (Pa) formulations were developed. Yet the current vaccines are incapable of providing sustained, lifelong immunity and eliminating subclinical infections, which pose a threat especially for unimmunized infants as well as adolescents and adults. Thus, finding new protein candidates with high immune protective capacities is necessary to enhance the clinical efficacy of current acellular pertussis (Pa) vaccines. In this study, iron-superoxide dismutase (FeSOD) protein was investigated for its capacity of conferring protectivity as well as stimulating humoral and cellular responses against B. pertussis infection in a mouse model. For this purpose, sodB gene, which encodes iron-superoxide dismutase FeSOD protein, was amplified from the genomic DNA of the universal B. pertussis strain &lsquo / Tohama I&rsquo / and sequentially cloned to pGEM&reg / -T subcloning and pET-28a(+) expression vectors. Afterwards sodb/pET28a(+) construct was introduced to E. coli BL21(DE3) cells and the gene was overexpressed therein via IPTG induction. The expressed FeSOD protein was then purified by affinity chromatography and its previously reported immunogenicity was confirmed by Western blot. After filter-sterilization, the protein was adsorbed to alum [Al(OH)3] adjuvant and introduced to BALB/c twice at three weeks intervals intraperitoneally at a concentration of 20 &mu / g purified FeSOD protein/mouse. Another group of mice were immunized in tandem with heat-inactivated whole-cell suspension of B. pertussis. Ten days after the second immunization, mice were intranasally challenged with the local &lsquo / Saadet&rsquo / strain of B. pertussis. Next the lungs of groups of mice were excised, homogenized and plated as serial dilutions on days 5, 8 and 14 post-challenge, and viable lung CFU counts were carried out. Whole cell immunization conferred complete bacterial clearance following B. pertussis intranasal infection while FeSOD immunization failed to attain such protection. In addition to the protectivity assay, ELISA was performed to assess the humoral (i.e. IgG) immune response triggered upon FeSOD- and whole-cell immunizations and a statistically significant increase in anti-FeSOD IgG production was observed in FeSOD-immunized group. Finally, cellular immune response was tested via cytokine (IFN-&gamma / ) assay, in which spleens of mice were excised, splenocytes were cultured and the level of IFN-&gamma / production upon FeSOD addition to the cultures was measured via ELISA. This test showed that whole-cell immunization triggered IFN-&gamma / production at significant levels while FeSOD-immunization did not / indicating the failure of alum-adsorbed FeSOD immunization in inducing cell-mediated immune response.

Page generated in 0.0505 seconds