• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 27
  • 8
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 105
  • 19
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Relating genotoxicity to DNA repair and reproductive success in zebrafish (Danio rerio) exposed to environmental toxicants

Reinardy, Helena C. January 2012 (has links)
The potential for environmental toxicants to cause genetic damage (genotoxicity) in organisms is a prominent concern because effects on DNA can compromise reproductive success and survival in organisms. Genotoxicity in male germ cells is of particular concern because damage to DNA in sperm may not be repaired and the consequences of damaged genetic material may be transgenerational (from parent to offspring). An integrated approach across multiple levels of biological organization is necessary to establish linkages between exposure to genotoxicants and subsequent effects at molecular and higher levels of biological organization. This thesis addresses the relation between toxicant-induced genotoxicity and reproductive success in zebrafish, and focuses on a model genotoxicant (hydrogen peroxide) and dissolved metals (radionuclide or non-radioactive forms) under controlled laboratory conditions. Uptake and depuration kinetics of a mixture of radionuclides (54Mn, 60Co, 65Zn, 75Se, 109Cd, 110mAg, 134Cs, and 241Am) were investigated, and radiation dose estimations were computed to link exposure and bioaccumulation with radiation dose. Cobalt (Co, non-radioactive) was selected as an environmentally relevant toxicant for investigation of genotoxicity and effects on reproductive success with a focus on male fish. Chronic exposure (12-d) to 0 – 25 mg l-1 Co resulted in reduced numbers of spawned eggs, lower fertilization success, and reduced survival of larvae to hatching. In male fish, DNA damage was detected in sperm and genes involved in DNA repair (xrcc5, xrcc6, and rad51) were induced in testes from some Co treatments, generally consistent with reduced reproductive success. No change in expression of repair genes in larvae spawned from parents exposed to Co was observed. Overall, results indicate that DNA damage and induction of DNA repair genes can occur rapidly after exposure to genotoxicants and that, if exposure levels are elevated, negative effects on reproduction can occur. Results are considered with particular focus on implications of male genotoxicity on reproductive success and the potential for transgenerational effects of toxicants.
62

Identification of b-catenin and other RNAs in developing thalamic axons

Davey, John William January 2009 (has links)
This thesis provides evidence for the presence of multiple RNAs in the axons and growth cones of developing thalamic cells, particularly the mRNA for the cell adhesion and Wnt-signalling-related molecule b-catenin. After many decades of effort, mRNAs have been shown to be present in the axons of many different systems in recent years. Furthermore, these mRNAs have been shown to be locally translated at the growth cone, and this local translation is required for axons to turn in response to multiple guidance cues. As studies accumulate, it is becoming clear that different axonal systems contain different complements of mRNAs and have different requirements for local translation. One axonal system which has not been investigated to date is the thalamocortical tract. The nuclei of the thalamus are connected to the areas of the cortex via bundles of axons which travel from the thalamus to the cortex via the ventral telencephalon during embyronic development. These axons make a number of turns and are guided by many cues and other axonal tracts before innervating their cortical target. In this thesis, a quantitative real-time polymerase chain reaction (qRT-PCR) approach is developed to isolate multiple mRNAs from developing thalamic axons in vitro, including b-catenin mRNA, b-actin mRNA, 18S ribosomal RNA and ten other mRNAs. The method used should be suitable for use with other axonal systems and also for testing the effect of guidance cues on mRNA expression in axons. The qRT-PCR results for b-catenin, b-actin and 18S have been validated using in situ hybridisation. Analysis of in situ hybridisation results indicates that b-catenin and 18S, but not b-actin, are upregulated in the growth cone compared to the axon. As b-catenin has been shown to be involved in axon guidance via Slit and ephrin guidance cues in other axonal systems, and these guidance cues act upon thalamocortical axons, the identification of b-catenin mRNA in thalamic axons is an important step towards a full understanding of the thalamocortical system. The results presented here indicate that local protein synthesis is likely to occur in thalamic axons as it does in other axonal systems, and that local translation is likely to be important for thalamic axonal responses to guidance cues and other axonal tracts.
63

Role efluxového systému AdeABC v rezistenci Acinetobacter baumannii k aminoglykosidům / The role of the AdeABC efflux system in resistance of Acinetobacter baumannii to aminoglycosides

Kladivová, Lucie January 2014 (has links)
Acinetobacter baumannii is an important nosocomial pathogen characterized by the ability to acquire and develop complex resistance to antimicrobial agents. This capability is caused by eflux systems removing molecules of antibiotics from bacterial intracellular space. AdeABC is an RND-type chromosomal eflux system specific for A. baumannii which has a broad substrate spectrum. In this work, we focused on functional analysis of AdeABC to define its role in the resistance development to aminoglycosides in genetically different strains. We studied a set of 15 epidemiologically and genotypically well characterized strains of A. baumannii which were fully susceptible to aminoglycosides and other antibiotics primarily effective against this species. We determined genotyp of AdeABC for these strains and performed a selection for resistant variants in the presence of netilmicin. Using real-time qRT-PCR we compared the expression of the transporter gene adeB in originally sensitive strains and selected variants. The obtained results confirmed that the increased expression of AdeABC significantly reduces susceptibility to aminoglycosides and other antibiotics. The results also suggest that the efflux system provides a significant selective advantage for nosocomial strains of A. baumannii.
64

Functional analysis of the mouse RBBP6 gene using Interference RNA.

Pretorius, Ashley. January 2007 (has links)
<p>The aim of this thesis was to investigate the cellular role of the mouse RBBP6 gene using the interference RNA (RNAi) gene targeting technology and also to understand the relevance of two promoters for the RBBP6 gene.</p>
65

Identifying Adaptations that Promote Softwood Utilization by the White-rot Basidiomycete Fungus, Phanerochaete carnosa

MacDonald, Jacqueline 17 December 2012 (has links)
Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus Phanerochaete carnosa has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by P. carnosa, its genome was sequenced and transcriptomes were evaluated after growth on wood compared to liquid medium. Results indicate that P. carnosa differs from P. chrysosporium in the number and expression levels of genes that encode lignin peroxidase (LiP) and manganese peroxidase (MnP), two enzymes that modify lignin present in wood. P. carnosa has more genes for MnP with higher expression levels than LiP, while the reverse has been observed for P. chrysosporium. The abundances of transcripts predicted to encode lignocellulose-modifying enzymes were then measured over the course of P. carnosa cultivation on four wood species. Profiles were consistent with decay of lignin before carbohydrates. Transcripts encoding MnP were highly abundant, and those encoding MnP and LiP featured significant substrate-dependent response. Since differences in modes of lignin degradation catalyzed by MnP and LiP could affect the ability of each to degrade lignin from different types of wood, their activity on various hardwoods and softwoods were tested. Results suggest that MnP degrades softwood lignin more effectively than hardwood lignin, consistent with high levels of this enzyme in P. carnosa.
66

Hedgehog Signalling and Tumour-initiating cells as Radioresistance Factors in Esophageal Adenocarcinoma

Teichman, Jennifer 27 November 2012 (has links)
Clinical management of esophageal adenocarcinoma (EAC) relies on radiation therapy, yet radioresistance is a pervasive challenge in this disease. The mechanisms of EAC radioresistance remain largely unknown due to a paucity of validated preclinical models. The present studies report on the development of seven primary xenograft models established from patient tumours. These models are used to interrogate the range of radiosensitivities and mechanisms of radioresistance in EAC tumours. We found that radiation enriches the tumour-initiating cell population in two xenograft lines tested. Furthermore, three tested xenograft lines respond to irradiation by upregulating Hedgehog transcripts, a pathway involved in stem cell maintenance and proliferation. Upregulation occurs in autocrine and paracrine patterns simultaneously, suggesting that Hedgehog signalling may have a complex role in the radioresponse of EAC tumours. These findings suggest that inhibiting stem cell pathways in combination with radiotherapy may have an important role in the clinical management of EAC.
67

Application Of Virus Induced Gene Silencing Of Brachypodium Distachyon, A Model Organism For Crops

Demircan, Turan 01 June 2009 (has links) (PDF)
Grass family is most important family in plant kingdom due to intensive usage of crops in agriculture. To date, molecular biology researches on grass family have had limitations because of inappropriate characteristics of barley and wheat to conduct experiments on them. Brachypodium distachyon that belongs to grass family has recently emerged as a model organism for crops. It shares common characteristics for a model plant due to its small genome, small physical plant size, a short lifecycle, and less demanding growth requirements / as other model organisms / Arabidopsis thaliana, Oryza sativa, and Zea mays (Draper et al. 2001). Especially after appreciating, the genetic distance of O. sativa to grasses (Garvin et al. 2008), it become a key organism to understand complicated genomic organization of agriculturally valuable grasses. Virus-induced gene silencing (VIGS) is one of the revolutionary methods allowing a rapid and effective loss of a gene function through RNA interference (Holzberg et al. 2002 / Liu et al. 2008). Barley stripe mosaic virus (BSMV) is still the most effective vector used in monocot gene silencing. It has a tripartite RNA genome having a wide range of infection ability for monocots including barley, oat, wheat, and maize as host (Holzberg et al. 2002 / Scofield 2005). In this thesis, Phytoene desaturase (PDS) gene of Brachypodium distachyon was silenced via BSMV mediated VIGS. Additionally, with Green fluorescence protein (GFP) bearing BSMV transcripts, GFP expression was observed under fluorescent microscope. To our knowledge, this is the first report demonstrating a VIGS via BSMV in Brachypodium distachyon. The success of virus induced gene silencing method in Brachypodium distachyon, will be a new convenient tool for evaluating functions of crop genes in this model organism.
68

Functional analysis of the mouse RBBP6 gene using Interference RNA.

Pretorius, Ashley. January 2007 (has links)
<p>The aim of this thesis was to investigate the cellular role of the mouse RBBP6 gene using the interference RNA (RNAi) gene targeting technology and also to understand the relevance of two promoters for the RBBP6 gene.</p>
69

Identifying Adaptations that Promote Softwood Utilization by the White-rot Basidiomycete Fungus, Phanerochaete carnosa

MacDonald, Jacqueline 17 December 2012 (has links)
Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus Phanerochaete carnosa has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by P. carnosa, its genome was sequenced and transcriptomes were evaluated after growth on wood compared to liquid medium. Results indicate that P. carnosa differs from P. chrysosporium in the number and expression levels of genes that encode lignin peroxidase (LiP) and manganese peroxidase (MnP), two enzymes that modify lignin present in wood. P. carnosa has more genes for MnP with higher expression levels than LiP, while the reverse has been observed for P. chrysosporium. The abundances of transcripts predicted to encode lignocellulose-modifying enzymes were then measured over the course of P. carnosa cultivation on four wood species. Profiles were consistent with decay of lignin before carbohydrates. Transcripts encoding MnP were highly abundant, and those encoding MnP and LiP featured significant substrate-dependent response. Since differences in modes of lignin degradation catalyzed by MnP and LiP could affect the ability of each to degrade lignin from different types of wood, their activity on various hardwoods and softwoods were tested. Results suggest that MnP degrades softwood lignin more effectively than hardwood lignin, consistent with high levels of this enzyme in P. carnosa.
70

Hedgehog Signalling and Tumour-initiating cells as Radioresistance Factors in Esophageal Adenocarcinoma

Teichman, Jennifer 27 November 2012 (has links)
Clinical management of esophageal adenocarcinoma (EAC) relies on radiation therapy, yet radioresistance is a pervasive challenge in this disease. The mechanisms of EAC radioresistance remain largely unknown due to a paucity of validated preclinical models. The present studies report on the development of seven primary xenograft models established from patient tumours. These models are used to interrogate the range of radiosensitivities and mechanisms of radioresistance in EAC tumours. We found that radiation enriches the tumour-initiating cell population in two xenograft lines tested. Furthermore, three tested xenograft lines respond to irradiation by upregulating Hedgehog transcripts, a pathway involved in stem cell maintenance and proliferation. Upregulation occurs in autocrine and paracrine patterns simultaneously, suggesting that Hedgehog signalling may have a complex role in the radioresponse of EAC tumours. These findings suggest that inhibiting stem cell pathways in combination with radiotherapy may have an important role in the clinical management of EAC.

Page generated in 0.0163 seconds