Spelling suggestions: "subject:"pgp"" "subject:"ggp""
1 |
MEASUREMENT OF D<sup>0</sup> DIRECTED FLOW AND ELLIPTIC FLOW IN AU+AU COLLISIONS AT √<sup>s</sup><sub>NN</sub> = 200 GEVLiang He (5929733) 10 June 2019 (has links)
<div>
<div>
<div>
<p>A strongly interacting Quark Gluon Plasma (QGP) is created in relativistic heavy ion
collisions at the Relativistic Heavy Ion Collider (RHIC). Owning to their large mass, charm
quarks are produced by initial parton-parton hard scatterings and experience the entire evolution of the QGP medium created in heavy ion collisions. They can therefore be a valuable
tool to study the early time dynamics and the properties of the QGP. Many experimental
observables are exploited to extract the information of QGP. This thesis analyzes the directed flow (v1) and the elliptic flow (v2) of D0 mesons (carrying a charm quark) using data
collected by the Heavy Flavor Tracker in the STAR experiment in 2014 and 2016 RHIC
runs. The v1 and v2 are measured by the first and second order Fourier coefficients of the
D0 azimuthal distribution relative to the reaction plane. The measurements help constrain
the parameters in theoretical models to describe heavy quark dynamics in the QGP. The
measurements are compared to the v1(2) of light flavors to shed additional insights on the
QGP.
</p>
</div>
</div>
</div>
|
2 |
PRODUCTION OF LAMBDA_C BARYONS IN PROTON-PROTON AND LEAD-LEAD COLLISIONS AT 5.02 TEV WITH CMSRui Xiao (11697166) 22 November 2021 (has links)
<div>
<div>
<div>
<div>
<p>Due to the large masses, heavy quarks are produced early and experience the full evolution
of the medium. The comparison between the nuclear modification factors of heavy flavor and
light hadrons can provide insights into the expected flavor dependence of parton energy loss.
The relative coalescence contribution to baryon production is expected to be more significant
than that to mesons because of their larger number of constituent quarks. In particular,
models involving coalescence of charm and light-flavor quarks predict a large enhancement
in the Λ+c /D0 production ratio in the heavy ion collisions relative to pp collisions and also
predict that this enhancement has a strong pT dependence.
</p><p>This dissertation presents the production of inclusive (prompt) Λ+c baryons in proton-
proton and lead-lead collisions at 5.02 TeV in 2015 (2017 and 2018) with CMS detector
at the CERN LHC. These two analyses show that Λ+c baryons production is found to
be suppressed in heavy ion collisions. This suppression is consistent with the suppression
observed in D0 meson measurements. The Λ+c /D0 production ratios in pp collisions are
consistent with a model obtained by adding color reconnection in hadronization to PYTHIA8.
Also the Λ+c /D0 production ratios in pp collisions are consistent with the model that includes
enhanced contribution from the decay of excited charm baryons and the model includes the
effect of fragmentation and coalescence. There is a hint of an enhancement in the Λ+c /D0
production ratio in PbPb collisions in the pT range of 6–12.5 GeV/c compared to pp collisions.
The Λ+c /D0 ratios in pp and PbPb collisions for pT > 12.5 GeV/c are found to be consistent
with each other.
</p>
</div>
</div>
</div>
</div>
|
3 |
Causal Viscous Hydrodynamics for Relativistic Heavy Ion CollisionsSong, Huichao 05 November 2009 (has links)
No description available.
|
4 |
Étude de la densité de particules chargées et des mésons vecteurs de basses masses en collisions Pb-Pb à sqrt(s)NN = 2.76 TeV dans ALICE au LHC / Study of the charged particle density and low mass vector mesons in Pb-Pb collisions at sqrt(s)NN =2.76 TeV in ALICE at LHCGuilbaud, Maxime 25 October 2013 (has links)
La matière que nous connaissons est composée de hadrons dont les quarks et les gluons sont les composants élémentaires. Ces derniers n'existent pas libres dans la matière ordinaire et sont donc en permanence confinés dans les hadrons. Cependant, d'après les prédictions théoriques, quelques microsecondes après le Big Bang, la température était suffisamment élevée pour que les quarks et les gluons ne soient pas contenus dans les hadrons. Il s'agit d'une phase déconfinée de la matière hadronique appelée Plasma de Quarks et Gluons (QGP). Le Large Hadron Collider (LHC) au CERN (Genève) est un accélérateur de particules permettant d'accélérer, entre autres, des ions et de produire des collisions à des énergies dans le centre de masse par nucléons allant jusqu'à plusieurs TeraélectronVolts. Il est ainsi possible d'atteindre des températures permettant de recréer cette phase de QGP pour en étudier les propriétés. C'est dans ce cadre que se place l'expérience ALICE (A Large Ion Collider Experiement) qui est dédiée à l'étude des collisions d'ions lourds ultra-relativistes. Le temps de vie du QGP étant trop faible, il n'est pas possible de l'étudier directement. Il est alors nécessaire d'utiliser des observables indirectes. Ce travail de thèse s'inscrit directement dans ce programme de physique par le biais de l'étude des collisions d'ions lourds à 2.76 TeV. Deux observables sont abordées : la densité de particules chargées par unité de pseudorapidité et les mésons vecteurs de basse masse (rho, omega et phi) dans le canal dimuons. La première observable permet d'accéder à des informations sur les conditions initiales et la dynamique sous-jacente des mécanismes de production de particules. La mesure est réalisée sur la gamme en pseudo-rapidité la plus large jamais atteinte au LHC (10 unités) grâce au développement d'une méthode d'analyse originale dite " méthode des vertex déplacés ". La technique employée et les résultats obtenus sont décrits dans le chapitre 3. L'étude des mésons vecteurs de basse masse permet d'accéder à la production d'étrangeté via le méson phi et à la symétrie chirale à travers la modification de la fonction spectrale du rho. L'analyse a été menée à l'aide du spectromètre à muons d'ALICE et les résultats obtenus sur le taux de production du méson phi par rapport au mésons rho et omega sont présentés dans le chapitre 4. Dans ce chapitre, une étude sur la sensibilité du détecteur aux effets liés à la restauration de la symétrie chirale est aussi menée / The matter is composed of hadrons of which quarks and gluons are the elementary components. These do not exist in a free state in ordinary matter and are therefore permanently confined in hadrons. However, according to theoretical predictions, a few microseconds after the Big Bang, the temperature was high enough to create a deconfined state of quarks and hadrons : the Quark and Gluon Plasma (QGP). The Large Hadron Collider (LHC) at CERN (Geneva) is a particle accelerator which accelerates, among others, ions and produces collisions with energies per nucleons in the center of mass up to several TeraelectronVolts. It is thus possible to achieve temperatures to recreate the QGP phase to study its properties. The experiment ALICE (A Large Ion Collider Experiment) is dedicated to the study of such ultra-relativistic heavy-ion collisions. The lifetime of the QGP being too low, it is not possible to study it directly. It is then necessary to use indirect observables. This PhD work is directly related to the study of heavy-ion collisions at 2.76 TeV. Two observables are discussed : the density of charged particles per unit of pseudorapidity and low mass vector mesons (rho, omega and phi) in the dimuon channel. The first observable gives access to informations about the initial conditions and the underlying dynamics of particle production mechanisms. The measurement is performed in the largest pseudorapidity range reached at the LHC (10 units) thanks to the development of an original analysis method called " displaced vertex technique ". The technique employed and the results obtained are described in Chapter 3. The study of low mass vector mesons allows to probe the production of strangeness via the phi meson and chiral symmetry through the ! spectral function modification. The analysis was conducted using the ALICE muon spectrometer and the results obtained from the production rate of the phi with respect to rho and omega are shown in Chapter 4. In this chapter, a study on the sensitivity of the detector to the effects related to the chiral symmetry restoration is also conducted
|
5 |
Gluons em estrelas de nêutrons / Gluons in neutron StarsFranzon, Bruno Cezar de Souza 03 April 2012 (has links)
O plasma de quarks e gluons (QGP) em temperatura zero e alta densidade bariônica é um sistema que pode existir no interior de estrelas densas. É possível que esse QGP frio compartilhe algumas características com o plasma quente, observado em colisões de íons pesados relativísticos, sendo também um sistema fortemente interagente. Neste trabalho, utilizamos uma equação de estado derivada a partir da QCD e a aplicamos no estudo de estrutura estelar. Mostramos que nossos resultados são compatíveis com o pulsar PSR J1614 2230 de massa (1.97 ± 0.04)M. / The Quark Gluon Plasma (QGP) at zero temperature and high baryon number is a system that may exist in the core of dense stars. This cold QGP has a rich phase structure and at high enough chemical potential it is quite possible that it shares some features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. We use an equation of state derived from QCD and apply it to study of stellar structure. Our results reproduce the measured mass, (1.97 ± 0.04)M, of the pulsar PSR J1614 2230.
|
6 |
Gluons em estrelas de nêutrons / Gluons in neutron StarsBruno Cezar de Souza Franzon 03 April 2012 (has links)
O plasma de quarks e gluons (QGP) em temperatura zero e alta densidade bariônica é um sistema que pode existir no interior de estrelas densas. É possível que esse QGP frio compartilhe algumas características com o plasma quente, observado em colisões de íons pesados relativísticos, sendo também um sistema fortemente interagente. Neste trabalho, utilizamos uma equação de estado derivada a partir da QCD e a aplicamos no estudo de estrutura estelar. Mostramos que nossos resultados são compatíveis com o pulsar PSR J1614 2230 de massa (1.97 ± 0.04)M. / The Quark Gluon Plasma (QGP) at zero temperature and high baryon number is a system that may exist in the core of dense stars. This cold QGP has a rich phase structure and at high enough chemical potential it is quite possible that it shares some features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. We use an equation of state derived from QCD and apply it to study of stellar structure. Our results reproduce the measured mass, (1.97 ± 0.04)M, of the pulsar PSR J1614 2230.
|
7 |
Two-particle correlations in angular and momentum space in heavy ion collisions at STAROldag, Elizabeth Wingfield 26 September 2013 (has links)
For over a decade studies of the strong interaction in extremely dense nuclear environments have been done at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It is hypothesized that colliding two beams of Au nuclei at relativistic speeds creates an environment of hot dense nuclear matter where the quarks and gluons inside the nucleus, which are normally confined within the protons and neutrons, become deconfined into a soup called the quark-gluon plasma. Since direct observation of this short-lived phase is impossible, many sophisticated analysis techniques attempt to study the early interactions via the final state particles. What has emerged from analyses of the data are two, contradictory paradigms for understanding the results. On the one hand the colliding quarks and gluons are thought to strongly interact and reach thermal equilibrium. The other view is that primary parton-parton scattering leads directly to jet fragmentation with little effect from re-scattering. It is in principle possible to distinguish and perhaps falsify one or both of these models of relativistic heavy ion collisions via the analysis of two-particle correlations among all charged particles produced in [mathematical symbols] = 200 GeV Au+Au collisions at the STAR experiment at RHIC. This dissertation presents studies of two-particle correlations, whose derivation can be traced back to Pearson's correlation coefficient, in transverse momentum and angular space. In momentum space a broad peak is observed extending from 0.5-4.0 GeV/c which, as a function of nuclear overlap, remains at a fixed position while monotonically increasing in amplitude. Comparisons to theoretical models suggests this peak is from jet fragmentation. In a complementary study the momentum distribution of correlations in ([eta],[phi]) space is investigated. The momentum distribution of correlated pairs that contribute to the peak near the origin, commonly associated with jet fragmentation, is peaked around 1.5 GeV/c and does not soften with increased centrality. These measurements present important aspects of the available six dimensional correlation space and provide definitive tests for theoretical models. Preliminary findings do not appear to support the hypothesis of a strongly interacting QGP where back-to-back jets are expected to be significantly suppressed. / text
|
8 |
Étude de la production de méson neutre léger dans la voie de désintégration dimuonique en collision proton-proton à sqrt(s) = 13 TeV en rapidité vers l'avant dans ALICE au LHC du CERN / Study of light-neutral meson production in the dimuon chanel in pp collisions at sqrt(s)=13 TeV at forward rapidity at the CERN LHC with ALICETeyssier, Boris 24 November 2017 (has links)
La matière qui nous entoure est formé de hadrons, eux-même constitués de quarks et de gluons. Ces derniers sont des composants élémentaires qui n'existent pas sous forme libre. Cependant nous savons à l'heure actuelle que la matière confinée dans des hadrons peut, dans des conditions de haute température et/ou de haute densité baryonique, se retrouver sous une forme déconfinée de plasma de quarks et de gluons. Pour réaliser expérimentalement les conditions permettant de former ce plasma de quarks et de gluons, nous avons besoin d'une machine capable de faire entrer en collision des noyaux à des énergies très élevées: cela est notamment possible au CERN, où se situe le plus grand accélérateur de particules du monde, le Large Hadron Collider, qui a permis de faire entrer en collisions des noyaux de plomb à une énergie par paire de nucléons de 2.76 et 5.02TeV, et des protons à des énergies allant de 0.9 à 13TeV. Les collisions entre noyaux de plomb permettent, en particulier, d'atteindre les conditions de densité d'énergie nécessaires à la formation de la phase de plasma de quarks et de gluons. Ce travail de thèse contribue à ce programme de physique par l'étude de la production de mésons neutres légers en collisions proton-proton à 13TeV, référence nécessaire pour comprendre les observations en collisions plomb-plomb. L'étude des mésons neutres légers a été menée dans le canal dimuonique par l'analyse du spectre de masse invariante des dimuons de masse inférieure à 1.5 GeV/c², permettant notamment de mesurer les sections efficaces des mésons eta, rho/omega et phi / The ordinary matter surrounding us is made of hadrons which in turn are composed of quarks and gluons. These latter are elementary constituents which cannot be observed in a free state. However it is at present recognized that this matter confined within hadrons can undergo, under extreme conditions of high temperature and/or highnet baryonic density, a transition to a state of deconfined quarks and gluons whichcalled quark gluon plasma. The conditions required to form this quark gluon plasma can be experimentallyachieved using a machine capable of colliding nuclei at very high energies: this is particularly the case at CERN where is located the world’s largest and most powerful particle accelerator, the Large Hadron Collider, which collided Pb ions at a center-of-mass energy of 2.76 to 5.02 TeV per nucleon pair and protons of 0.9 to 13 TeV. Pb-Pb collisionssuch relativistic energies definitely allow for the suitable density conditions to form the quark gluon plasma phase. This thesis work contributes to this physics program by studying the production of neutral light mesons in collisions of proton-proton at 13 TeV, which provides the necessary reference to understand further observations done in Pb-Pb collisions. This study has been performed in the dimuon decay channel by analyzing the dimuon invariant mass spectrum in the region of masses lower than 1.5 GeV/c2 , giving accessthe measurement of the cross sections of eta, rho/omega and phi mesons
|
9 |
Estudo da produção de quarks pesados no experimento STAR@RHIC / Study as production of heavy quarks in the STAR experiment at RHICLima, Lucas Mafia 27 October 2011 (has links)
O plasma de quarks e glúons é uma previsão da cromodinâmica quântica e experimentos em aceleradores de alta energia têm encontrado evidências experimentais de sua criação em colisões de íons pesados relativísticos. Uma dessas evidências foi proposta por Matsui e Satz [1] que prevê a supressão de estados de heavy quarkonium na existência deste plasma. Este projeto tem como objetivo obter a seção de choque da produção de no experimento STAR em colisões p+p e d+Au com energia no centro de massa de 200GeV e calcular o fator de modificação nuclear Rab. Para tal, foi necessário reconstruir os através de seu decaimento leptônico. Os subdetectores do STAR utilizados foram o TPC e BEMC. Os valores encontrados para seção de choque foram de 3i=1 (nS)e-e+(nS)p+p= 84 ±9(stat)+18-19(sist)pb e 3i=1 (nS)e-e+(nS)d + Au = 41 ± 4(stat) +7-8(sist)nb para as produções pp2009 e dAu2008, respectivamente. Os valores se encontram compatíveis com os teóricos calculados pelo modelo de evaporação de cor. O Rab experimental vale 1.24 ± 0.18(stat)+0.35 0.38(sist). / The quark and gluon plasma is a prediction of QCD, and high energy experiments have studied evidences of its creation in relativistic heavy ion collisions. One of these evidences was proposed by Matsui and Satz [1] that provides a experimental signature of the creation of the plasma, observing an anomalous supression on the heavy quarkonium production. This project aims to get production cross section in the STAR experiment in collisions p+p and d+Au with energy in the center of mass of 200GeV and calculate the nuclear modification factor Rab. To this end, it was necessary to reconstruct the from his leptonic decay. The subsystems used in this analysis were the TPC, BEMC and the heavy quarkonia trigger system. The values for the cross sections were 3i=1 (nS)e-e+(nS)p+p= 84 ±9(stat)+18-19(sist)pb and 3i=1 (nS)e-e+(nS)d + Au = 41 ± 4(stat) +7-8(sist)nb for pp2009 and dAu2008 productions, respectively. These values are compatible with the theoretical calculated by the color evaporation model. The determined value for the factor Rab was 1.24 ± 0.18(stat)+0.35 0.38(sist).
|
10 |
Estudo da produção de quarks pesados no experimento STAR@RHIC / Study as production of heavy quarks in the STAR experiment at RHICLucas Mafia Lima 27 October 2011 (has links)
O plasma de quarks e glúons é uma previsão da cromodinâmica quântica e experimentos em aceleradores de alta energia têm encontrado evidências experimentais de sua criação em colisões de íons pesados relativísticos. Uma dessas evidências foi proposta por Matsui e Satz [1] que prevê a supressão de estados de heavy quarkonium na existência deste plasma. Este projeto tem como objetivo obter a seção de choque da produção de no experimento STAR em colisões p+p e d+Au com energia no centro de massa de 200GeV e calcular o fator de modificação nuclear Rab. Para tal, foi necessário reconstruir os através de seu decaimento leptônico. Os subdetectores do STAR utilizados foram o TPC e BEMC. Os valores encontrados para seção de choque foram de 3i=1 (nS)e-e+(nS)p+p= 84 ±9(stat)+18-19(sist)pb e 3i=1 (nS)e-e+(nS)d + Au = 41 ± 4(stat) +7-8(sist)nb para as produções pp2009 e dAu2008, respectivamente. Os valores se encontram compatíveis com os teóricos calculados pelo modelo de evaporação de cor. O Rab experimental vale 1.24 ± 0.18(stat)+0.35 0.38(sist). / The quark and gluon plasma is a prediction of QCD, and high energy experiments have studied evidences of its creation in relativistic heavy ion collisions. One of these evidences was proposed by Matsui and Satz [1] that provides a experimental signature of the creation of the plasma, observing an anomalous supression on the heavy quarkonium production. This project aims to get production cross section in the STAR experiment in collisions p+p and d+Au with energy in the center of mass of 200GeV and calculate the nuclear modification factor Rab. To this end, it was necessary to reconstruct the from his leptonic decay. The subsystems used in this analysis were the TPC, BEMC and the heavy quarkonia trigger system. The values for the cross sections were 3i=1 (nS)e-e+(nS)p+p= 84 ±9(stat)+18-19(sist)pb and 3i=1 (nS)e-e+(nS)d + Au = 41 ± 4(stat) +7-8(sist)nb for pp2009 and dAu2008 productions, respectively. These values are compatible with the theoretical calculated by the color evaporation model. The determined value for the factor Rab was 1.24 ± 0.18(stat)+0.35 0.38(sist).
|
Page generated in 0.0321 seconds