• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large eddy simulation of TiO₂ nanoparticle evolution in turbulent flames

Sung, Yonduck 03 February 2012 (has links)
Flame based synthesis is a major manufacturing process of commercially valuable nanoparticles for large-scale production. However, this important industrial process has been advanced mostly by trial-and-error based evolutionary studies owing to the fact that it involves tightly coupled multiphysics flow phenomena. For large scale synthesis of nanoparticles, different physical and chemical processes exist, including turbulence, fuel combustion, precursor oxidation, and nanoparticle dynamics exist. A reliable and predictive computational model based on fundamental physics and chemistry can provide tremendous insight. Development of such comprehensive computational models faces challenges as they must provide accurate descriptions not only of the individual physical processes but also of the strongly coupled, nonlinear interactions among them. In this work, a multiscale computational model for flame synthesis of TiO2 nanoparticles in a turbulent flame reactor is presented. The model is based on the large-eddy simulation (LES) methodology and incorporates detailed gas phase combustion and precursor oxidation chemistry as well as a comprehensive nanoparticle evolution model. A flamelet-based model is used to model turbulence-chemistry interactions. In particular, the transformation of TiCl4 to the solid primary nucleating TiO2 nanoparticles is represented us- ing an unsteady kinetic model considering 30 species and 70 reactions in order to accurately describe the critical nanoparticle nucleation process. The evolution of the TiO2 number density function is tracked using the quadrature method of moments (QMOM) for univariate particle number density function and conditional quadrature method of moments (CQMOM) for bivariate density distribution function. For validation purposes, the detailed computational model is compared against experimental data obtained from a canonical flame- based titania synthesis configuration, and reasonable agreement is obtained. / text
2

Large-eddy simulations of scramjet engines

Koo, Heeseok 20 June 2011 (has links)
The main objective of this dissertation is to develop large-eddy simulation (LES) based computational tools for supersonic inlet and combustor design. In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. In fact, combustion models developed in the context of Reynolds-averaged Navier Stokes (RANS) equations exhibit better predictive capability when used in the LES framework. The development of a predictive computational tool based on LES will provide a significant boost to the design of scramjet engines. Although LES has been used widely in the simulation of subsonic turbulent flows, its application to high-speed flows has been hampered by a variety of modeling and numerical issues. In this work, we develop a comprehensive LES methodology for supersonic flows, focusing on the simulation of scramjet engine components. This work is divided into three sections. First, a robust compressible flow solver for a generalized high-speed flow configuration is developed. By using carefully designed numerical schemes, dissipative errors associated with discretization methods for high-speed flows are minimized. Multiblock and immersed boundary method are used to handle scramjet-specific geometries. Second, a new combustion model for compressible reactive flows is developed. Subsonic combustion models are not directly applicable in high-speed flows due to the coupling between the energy and velocity fields. Here, a probability density function (PDF) approach is developed for high-speed combustion. This method requires solution to a high dimensional PDF transport equation, which is achieved through a novel direct quadrature method of moments (DQMOM). The combustion model is validated using experiments on supersonic reacting flows. Finally, the LES methodology is used to study the inlet-isolator component of a dual-mode scramjet. The isolator is a critical component that maintains the compression shock structures required for stable combustor operation in ramjet mode. We simulate unsteady dynamics inside an experimental isolator, including the propagation of an unstart event that leads to loss of compression. Using a suite of simulations, the sensitivity of the results to LES models and numerical implementation is studied. / text
3

LES/PDF approach for turbulent reacting flows

Donde, Pratik Prakash 15 February 2013 (has links)
The probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of turbulent reacting flows. In this approach, the joint-PDF of all reacting scalars is estimated by solving a PDF transport equation, thus providing detailed information about small-scale correlations between these quantities. The objective of this work is to further develop the LES/PDF approach for studying flame stabilization in supersonic combustors, and for soot modeling in turbulent flames. Supersonic combustors are characterized by strong shock-turbulence interactions which preclude the application of conventional Lagrangian stochastic methods for solving the PDF transport equation. A viable alternative is provided by quadrature based methods which are deterministic and Eulerian. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a new approach called semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach. For soot modeling in turbulent flows, an LES/PDF approach is integrated with detailed models for soot formation and growth. The PDF approach directly evolves the joint statistics of the gas-phase scalars and a set of moments of the soot number density function. This LES/PDF approach is then used to simulate a turbulent natural gas flame. A Lagrangian method formulated in cylindrical coordinates solves the high dimensional PDF transport equation and is coupled to an Eulerian LES solver. The LES/PDF simulations show that soot formation is highly intermittent and is always restricted to the fuel-rich region of the flow. The PDF of soot moments has a wide spread leading to a large subfilter variance. Further, the conditional statistics of soot moments conditioned on mixture fraction and reaction progress variable show strong correlation between the gas phase composition and soot moments. / text
4

Theoretical and numerical study of collision and coalescence - Statistical modeling approaches in gas-droplet turbulent flows / Étude théorique et numérique de collision et coalescence - Approches statistiques de la modélisation des écoulements turbulents gaz-gouttes

Wunsch, Dirk 16 December 2009 (has links)
Ce travail consiste en une étude des phénomènes de coalescence dans un nuage de gouttes, par la simulation numérique directe d'un écoulement turbulent gazeux, couplée avec une approche de suivi Lagrangien pour la phase dispersée. La première étape consiste à développer et valider une méthode de détection des collisions pour une phase polydispersée. Elle est ensuite implémentée dans un code couplé de simulation directe et de suivi Lagrangien existant. Des simulations sont menées pour une turbulence homogène isotrope de la phase continue et pour des phases dispersées en équilibre avec le fluide. L'influence de l'inertie des gouttes et de la turbulence sur le taux de coalescence des gouttes est discutée dans un régime de coalescence permanente. Un aperçu est donné de la prise en compte d'autres régimes de collision et de coalescence entre gouttes. Ces simulations sont la base de développement et de validation des approches utilisées dans les calculs à l'échelle industrielle. En particulier, les résultats des simulations sont comparés avec les prédictions d'une approche Lagrangienne de type Monte-Carlo et de l'approche Eulerienne 'Direct Quadrature Method of Moments' (DQMOM). Différents types de fermeture des termes de coalescence sont validés. Les uns sont basés sur l'hypothèse de chaos-moléculaire, les autres sont capables de prendre en compte des corrélations de vitesses des gouttes avant la collision. Il est montré que cette derniere approche prédit beaucoup mieux le taux de coalescence par comparaison avec les résultats des simulations déterministes. / Coalescence in a droplet cloud is studied in this work by means of direct numerical simulation of the turbulent gas flow, which is coupled with a Lagrangian tracking of the disperse phase. In a first step, a collision detection algorithm is developed and validated, which can account for a polydisperse phase. This algorithm is then implemented into an existing code for direct numerical simulations coupled with a Lagrangian tracking scheme. Second, simulations are performed for the configuration of homogeneous isotropic turbulence of the fluid phase and a disperse phase in local equilibrium with the fluid. The influence of both droplet inertia and turbulence intensity on the coalescence rate of droplets is discussed in a pure permanent coalescence regime. First results are given, if other droplet collision outcomes than permanent coalescence (i.e. stretching and reflexive separation) are considered. These results show a strong dependence on the droplet inertia via the relative velocity of the colliding droplets at the moment of collision. The performed simulations serve also as reference data base for the development and validation of statistical modeling approaches, which can be used for simulations of industrial problems. In particular, the simulation results are compared to predictions from a Lagrangian Monte-Carlo type approach and the Eulerian 'Direct Quadrature Method of Moments' (DQMOM) approach. Different closures are validated for the coalescence terms in these approaches, which are based either on the assumption of molecular-chaos, or based on a formulation, which allows to account for the correlation of droplet velocities before collision by the fluid turbulence. It is shown that the latter predicts much better the coalescence rates in comparison with results obtained by the performed deterministic simulations.
5

Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods

Peña Monferrer, Carlos 06 November 2017 (has links)
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches. / El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d / L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe / Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493 / TESIS

Page generated in 0.1257 seconds