• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 10
  • 10
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Optimizing Multiple Quantum Magic Angle Spinning NMR Spectra in the Static Limit

Wilson, Brendan January 2022 (has links)
No description available.
2

Structural Insights from the NMR Spectroscopy of Quadrupolar Nuclei: Exploiting Electric Field Gradient and Spin-Spin Coupling Tensors

Perras, Frédéric Alain January 2015 (has links)
NMR spectroscopy has evolved into one of the most important characterization techniques in chemistry with which it is possible to obtain valuable structural, dynamical, and mechanistic information. Most applications of NMR have however been limited to the use of nuclei having spin quantum numbers of 1/2. This thesis discusses the developments that have been advanced in order to extract quantitative structural information from the NMR spectroscopy of quadrupolar nuclei (spin, I>1/2) which account for the vast majority of the NMR-active nuclei. In a first part of the thesis, a NMR crystallographic method is developed which uses the electric field gradient tensor measured at the nuclear sites as an experimental constraint in DFT-based crystal structure refinements. This inclusion of experimental data into crystal structure refinements enables the determination of higher quality, and experimentally-relevant, structures. We apply this new methodology in order to determine higher quality crystal structures for the non-linear optical material Na2B2Al2O7, sodium pyrophosphates, and the near-zero thermal expansion material ZrMgMo3O12. In a second part of this thesis, experimental techniques are developed for the measurement of spin-spin coupling between pairs of quadrupolar nuclei; the measurement of spin-spin coupling carries with it extremely valuable distance and connectivity information. Using DOR NMR, heteronuclear residual dipolar coupling as well as homonuclear J coupling multiplets can be observed. Notably, the J coupling between quadrupolar nuclei can still be measured in A2 spin systems, unlike in the case of pairs of spin-1/2 nuclei. The theory that was developed for the characterization of these multiplets was extended for the general simulation of exact NMR spectra of quadrupolar. This program, known as QUEST, is now free to use by anyone in the scientific community. Pulsed J-resolved NMR experiments are then described which enable the facile measurement of J and dipolar coupling in homonuclear pairs of quadrupolar nuclei. Notably, the J splitting is greatly amplified in A2 spin systems which provides strong structural information and enables the precise detection of smaller J coupling constants. These techniques are applied towards directly studying gallium metal-metal bonding interactions as well as boron-boron bonds in diboron compounds of importance in β-boration chemistry.
3

Solid-State Nuclear Magnetic Resonance of Exotic Quadrupolar Nuclei as a Direct Probe of Molecular Structure in Organic Ionic Solids

Burgess, Kevin January 2015 (has links)
In the past decade, the field of NMR spectroscopy has seen the emergence of ever more powerful superconducting magnets, which has opened the door for the observation of many traditionally challenging or non-receptive nuclei. In this dissertation, a variety of ionic solids with organic coordination environments are investigated using quadrupolar solid-state NMR experiments with an ultrahigh-field magnet (21.1 T). Two general research directions are presented including a 79/81Br solid-state NMR study of a series of 6 triphenylphosphonium bromides for which single-crystal X-ray structures are reported herein. A second research direction is also presented wherein alkaline-earth metal (25Mg, 43Ca, and 87Sr) solid-state NMR is used to characterize a systematic series of 16 aryl and alkyl carboxylates. In both studies, the quadrupolar nuclei studied are deemed “exotic” due to their unreceptive nature to NMR spectroscopic analysis including low natural abundances, large quadrupole moments, or low resonance frequencies. A variety of coordination modes to alkaline-earth metals, including N-atom coordination, are characterized herein for the first time using alkaline-earth metal solid-state NMR. In all cases, the electric field gradient (EFG) and chemical shift (CS) tensors are characterized and correlated to structural features such as interatomic distances measured from the crystal structure of the compound under study. In all of the projects undertaken herein, the gauge-including projector-augmented-wave density functional theory (GIPAW DFT) method is used, which allows for the prediction and rationalization of the experimental EFG and CS tensor parameters based on the input crystal structure. In the case of 43Ca solid-state NMR experiments reported in this dissertation, a linear correlation between the calculated and experimental 43Ca quadrupolar coupling constants, CQ, is used as a calibration curve for GIPAW DFT calculations performed on the 18 structural models currently available for the vaterite polymorph of CaCO3. Vaterite cannot be fully characterized by X-ray diffraction alone; therefore an NMR crystallography protocol is used in order to identify the model that best accounts for 43Ca solid-state NMR experiments performed on vaterite. It is expected that the conclusions from this dissertation can be used for future studies involving structural refinement and elucidation of solid materials containing challenging quadrupolar nuclei.
4

Characterization of Halogen Bonds with Multinuclear Magnetic Resonance in the Solid-State, X-ray Crystallography, and Quantum Chemical Calculations

Viger-Gravel, Jasmine January 2015 (has links)
Solid-state nuclear magnetic resonance (SSNMR) has proven to be a useful tool in the characterization of non-covalent interactions such as hydrogen bonding and cation-π interactions. In recent years, the scientific community has manifested a renewed interest towards an important class of non-covalent interaction, halogen bonding (XB), as it has applications in various fields such as crystal engineering and biological processes. This dissertation demonstrates that NMR parameters measured in the solid state are sensitive to changes in electronic structure, which are caused by halogen bonds. A series of halogen bonded compounds exhibiting interactions between different diiodoperfluorobenzenes (p- C6F4I2, o- C6F4I2, sym- C6F3I3, p- C6H4I2) and various halogen bond acceptors have been synthesized as part of this work. These new halogen bonded compounds were characterized with a combined theoretical and experimental SSNMR, X-ray diffraction (XRD) methods. The complete multinuclear magnetic resonance spectroscopy of the nuclei involved directly in the halogen bond (13C, 14/15N, 31P, 77Se, 35/37Cl and 79/81Br) were recorded at multiple magnetic fields (4.7, 9.4, 11.75 and 21.1 T). The specialized SSNMR experiments provided high-resolution spectra of quadrupolar nuclei, which were WURST-QCPMG or solid-echo type experiments combined with the variable offset cumulative spectral (VOCS) method, as for spin 1/2 nuclei cross polarization magic angle spinning (CPMAS) experiments were usually appropriate. This dissertation will discuss successful applications of SSNMR spectroscopy to characterize halogen bonds, it will demonstrate the significant changes in NMR observables in the presence of XB interaction and thus establish that NMR parameters are very sensitive to halogen bonding interaction. Furthermore, this work explains why the NMR parameters are correlated with the halogen bonding interaction. The different trends observed between the NMR observables and the halogen bonding were further understood with a ZORA-DFT natural localized molecular orbital (NLMO) study.
5

MULTINUCLEAR NMR SPECTROSCOPY METHODS FOR THE STUDY OF STRUCTURE AND DYNAMICS IN SOLID-STATE ELECTROLYTES FOR LITHIUM ION BATTERIES

Spencer, Noakes L Tara 04 1900 (has links)
<p>This thesis evaluates several solid-state NMR spectroscopy approaches to studying lithium ion dynamics in solid-state electrolytes. With the goal of reducing the risks associated with current liquid electrolytes, solid-state electrolytes provide non-flammable materials that are also stable against attack by cathode and anode materials. Solid-state NMR spectroscopy offers a versatile method to determine structural details and can also provide information about ion mobility in solid-state electrolytes. Challenges involved in the study of solid-state electrolytes include the difficulty in distinguishing between <sup>6,7</sup>Li resonances due to the small chemical shift range of diamagnetic lithium species. The NMR methods selected in this thesis aim to circumvent some of these issues in order to determine structural and dynamic properties in solid-state electrolytes. Several different electrolytes have been examined including LaLi<sub>0.5</sub>Fe<sub>0.2</sub>O<sub>2.09</sub> and related materials, which exhibit intricate structural properties. <sup>139</sup>La NMR spectroscopy, in combination with <sup>7</sup>Li MAS NMR spectroscopy, was used to determine the nature of this disorder. In addition, studies of the quadrupolar framework <sup>87</sup>Rb nucleus, which take advantage of its large electric field gradient, have been used to indirectly probe the activation energy for Ag<sup>+</sup> ion hopping in the solid-state silver ion electrolyte RbAg<sub>4</sub>I<sub>5</sub>. Alternatively, dipolar coupling between <sup>6</sup>Li and <sup>7</sup>Li has been used to compare lithium ion hopping rates in Li<sub>6</sub>BaLa<sub>2</sub>M<sub>2</sub>O<sub>12</sub> (M = Ta, Nb) using <sup>6</sup>Li{<sup>7</sup>Li}-REDOR NMR studies. Finally, T<sub>2</sub> relaxation studies have been used to probe ion dynamics in Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> and LiVO<sub>3</sub> in order to determine if this is a viable method to study dynamics in these materials.</p> / Doctor of Philosophy (PhD)
6

Multinuclear Solid-State Magnetic Resonance Studies on ‘Exotic’ Quadrupolar Nuclei: Acquisition Methods, High-Order Effects, Quantum Chemical Computations, and NMR Crystallography

Widdifield, Cory 05 March 2012 (has links)
This dissertation attempts to extend the classes of halogen-containing systems which may be studied using solid-state nuclear magnetic resonance (SSNMR). As line shape broadening due to the quadrupolar interaction (QI) scales inversely with the applied field, high-field magnet technology is indispensable for this research. Combining advanced radiofrequency pulse sequences with high-field wideline data acquisition allowed for the collection of very broad SSNMR signals of all quadrupolar halogen nuclei (i.e., 35/37Cl, 79/81Br and 127I) within a reasonable amount of experimental time. The initial systems for study were of the MX2 variety (M = Mg, Ca, Sr, Ba; X = Cl, Br, I). In total, 9 anhydrous compounds were tested. The effects of hydrate formation were tested on 7 additional compounds. Systematic trends in the observed δiso values (and to a lesser extent, Ω and CQ) were found to be diagnostic of the extent of hydration in these materials. Resolving power was successfully tested using SrBr2, which possesses 4 magnetically unique sites. The composition of CaBr2•xH2O was convincingly determined using SSNMR data and the hydration trends noted above. The sensitivity of the QI to the local bonding environment (e.g., bond distance changes of less than 0.05 Å) was used to refine (when coupled with gauge-including projector augmented-wave density functional theory (GIPAW DFT) quantum chemical computations) the structure of MgBr2, and was used to correct prior NMR data for CaCl2 (earlier accounts had been performed upon a CaCl2 hydrate). During NMR data analysis of certain iodine-containing materials, it was found that standard fitting software (which uses perturbation theory) could not reproduce the observations. Proper analysis required the use of exact simulation software and allowed for the observation of high-order quadrupole-induced effects (HOQIE). This motivated further studies using rhenium-185/187 nuclei, where it was expected that HOQIE would be more dramatic. The observed rhenium SSNMR spectra possessed additional fine structure that had never been observed before experimentally, nor would be expected from currently-available perturbation theory analysis software. Lastly, preliminary results are shown where 127I SSNMR is used to study important supramolecular systems, and the composition of the popular synthetic reagent ‘GaI’ is elucidated.
7

Multinuclear Solid-State Magnetic Resonance Studies on ‘Exotic’ Quadrupolar Nuclei: Acquisition Methods, High-Order Effects, Quantum Chemical Computations, and NMR Crystallography

Widdifield, Cory 05 March 2012 (has links)
This dissertation attempts to extend the classes of halogen-containing systems which may be studied using solid-state nuclear magnetic resonance (SSNMR). As line shape broadening due to the quadrupolar interaction (QI) scales inversely with the applied field, high-field magnet technology is indispensable for this research. Combining advanced radiofrequency pulse sequences with high-field wideline data acquisition allowed for the collection of very broad SSNMR signals of all quadrupolar halogen nuclei (i.e., 35/37Cl, 79/81Br and 127I) within a reasonable amount of experimental time. The initial systems for study were of the MX2 variety (M = Mg, Ca, Sr, Ba; X = Cl, Br, I). In total, 9 anhydrous compounds were tested. The effects of hydrate formation were tested on 7 additional compounds. Systematic trends in the observed δiso values (and to a lesser extent, Ω and CQ) were found to be diagnostic of the extent of hydration in these materials. Resolving power was successfully tested using SrBr2, which possesses 4 magnetically unique sites. The composition of CaBr2•xH2O was convincingly determined using SSNMR data and the hydration trends noted above. The sensitivity of the QI to the local bonding environment (e.g., bond distance changes of less than 0.05 Å) was used to refine (when coupled with gauge-including projector augmented-wave density functional theory (GIPAW DFT) quantum chemical computations) the structure of MgBr2, and was used to correct prior NMR data for CaCl2 (earlier accounts had been performed upon a CaCl2 hydrate). During NMR data analysis of certain iodine-containing materials, it was found that standard fitting software (which uses perturbation theory) could not reproduce the observations. Proper analysis required the use of exact simulation software and allowed for the observation of high-order quadrupole-induced effects (HOQIE). This motivated further studies using rhenium-185/187 nuclei, where it was expected that HOQIE would be more dramatic. The observed rhenium SSNMR spectra possessed additional fine structure that had never been observed before experimentally, nor would be expected from currently-available perturbation theory analysis software. Lastly, preliminary results are shown where 127I SSNMR is used to study important supramolecular systems, and the composition of the popular synthetic reagent ‘GaI’ is elucidated.
8

Multinuclear Solid-State Magnetic Resonance Studies on ‘Exotic’ Quadrupolar Nuclei: Acquisition Methods, High-Order Effects, Quantum Chemical Computations, and NMR Crystallography

Widdifield, Cory 05 March 2012 (has links)
This dissertation attempts to extend the classes of halogen-containing systems which may be studied using solid-state nuclear magnetic resonance (SSNMR). As line shape broadening due to the quadrupolar interaction (QI) scales inversely with the applied field, high-field magnet technology is indispensable for this research. Combining advanced radiofrequency pulse sequences with high-field wideline data acquisition allowed for the collection of very broad SSNMR signals of all quadrupolar halogen nuclei (i.e., 35/37Cl, 79/81Br and 127I) within a reasonable amount of experimental time. The initial systems for study were of the MX2 variety (M = Mg, Ca, Sr, Ba; X = Cl, Br, I). In total, 9 anhydrous compounds were tested. The effects of hydrate formation were tested on 7 additional compounds. Systematic trends in the observed δiso values (and to a lesser extent, Ω and CQ) were found to be diagnostic of the extent of hydration in these materials. Resolving power was successfully tested using SrBr2, which possesses 4 magnetically unique sites. The composition of CaBr2•xH2O was convincingly determined using SSNMR data and the hydration trends noted above. The sensitivity of the QI to the local bonding environment (e.g., bond distance changes of less than 0.05 Å) was used to refine (when coupled with gauge-including projector augmented-wave density functional theory (GIPAW DFT) quantum chemical computations) the structure of MgBr2, and was used to correct prior NMR data for CaCl2 (earlier accounts had been performed upon a CaCl2 hydrate). During NMR data analysis of certain iodine-containing materials, it was found that standard fitting software (which uses perturbation theory) could not reproduce the observations. Proper analysis required the use of exact simulation software and allowed for the observation of high-order quadrupole-induced effects (HOQIE). This motivated further studies using rhenium-185/187 nuclei, where it was expected that HOQIE would be more dramatic. The observed rhenium SSNMR spectra possessed additional fine structure that had never been observed before experimentally, nor would be expected from currently-available perturbation theory analysis software. Lastly, preliminary results are shown where 127I SSNMR is used to study important supramolecular systems, and the composition of the popular synthetic reagent ‘GaI’ is elucidated.
9

Multinuclear Solid-State Magnetic Resonance Studies on ‘Exotic’ Quadrupolar Nuclei: Acquisition Methods, High-Order Effects, Quantum Chemical Computations, and NMR Crystallography

Widdifield, Cory January 2012 (has links)
This dissertation attempts to extend the classes of halogen-containing systems which may be studied using solid-state nuclear magnetic resonance (SSNMR). As line shape broadening due to the quadrupolar interaction (QI) scales inversely with the applied field, high-field magnet technology is indispensable for this research. Combining advanced radiofrequency pulse sequences with high-field wideline data acquisition allowed for the collection of very broad SSNMR signals of all quadrupolar halogen nuclei (i.e., 35/37Cl, 79/81Br and 127I) within a reasonable amount of experimental time. The initial systems for study were of the MX2 variety (M = Mg, Ca, Sr, Ba; X = Cl, Br, I). In total, 9 anhydrous compounds were tested. The effects of hydrate formation were tested on 7 additional compounds. Systematic trends in the observed δiso values (and to a lesser extent, Ω and CQ) were found to be diagnostic of the extent of hydration in these materials. Resolving power was successfully tested using SrBr2, which possesses 4 magnetically unique sites. The composition of CaBr2•xH2O was convincingly determined using SSNMR data and the hydration trends noted above. The sensitivity of the QI to the local bonding environment (e.g., bond distance changes of less than 0.05 Å) was used to refine (when coupled with gauge-including projector augmented-wave density functional theory (GIPAW DFT) quantum chemical computations) the structure of MgBr2, and was used to correct prior NMR data for CaCl2 (earlier accounts had been performed upon a CaCl2 hydrate). During NMR data analysis of certain iodine-containing materials, it was found that standard fitting software (which uses perturbation theory) could not reproduce the observations. Proper analysis required the use of exact simulation software and allowed for the observation of high-order quadrupole-induced effects (HOQIE). This motivated further studies using rhenium-185/187 nuclei, where it was expected that HOQIE would be more dramatic. The observed rhenium SSNMR spectra possessed additional fine structure that had never been observed before experimentally, nor would be expected from currently-available perturbation theory analysis software. Lastly, preliminary results are shown where 127I SSNMR is used to study important supramolecular systems, and the composition of the popular synthetic reagent ‘GaI’ is elucidated.
10

New Theoretical Approaches for Solid-State NMR of Quadrupolar Nuclei with Applications to Glass Structure

Trease, Nicole Marie January 2009 (has links)
No description available.

Page generated in 0.0567 seconds