• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4161
  • 1154
  • 516
  • 412
  • 145
  • 75
  • 74
  • 62
  • 47
  • 46
  • 40
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 8290
  • 2033
  • 1820
  • 964
  • 772
  • 749
  • 733
  • 673
  • 654
  • 632
  • 594
  • 543
  • 482
  • 481
  • 474
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Quantum control of spins in semiconductor nanostructures

Pang, Hongliang, 庞鸿亮 January 2014 (has links)
Spins localized in semiconductor nanostructures have been intensively investigated for quantum spintronics. These include the spin of single electron localized by quantum dots or impurities, and spins of the lattice nuclei. These localized spins can be exploited as carriers of quantum information, while in some circumstances they also play the role of deleterious noise sources for other quantum objects through their couplings. Quantum control of the spins in semiconductor nanostructures is therefore of central interest for quantum applications. In this thesis, we address several problems related to the quantum control of electron or hole spin and nuclear spins in semiconductor quantum dots and impurity centers. The first problem studied is the control of nuclear spin bath for a hole spin qubit in III-V semiconductor quantum dot. In quantum dots formed on III-V compounds, the direct band gap of the host material allows ultrafast optical addressability of a single electron or hole spin qubit. However, nonzero nuclear spins of group III and group V elements result in a large statistical fluctuation in the Zeeman splitting of the spin qubit which then dephases in nanosecond time scale. We present a novel feedback scheme to suppress the statistical fluctuation of the nuclear spin field for enhancing the coherence time of the hole spin qubit. We also find positive feedback control which can amplify the magnitude of the nuclear field, so that a bimodal distribution can develop, realizing a quantum environment that can not be described by a single temperature. The second problem addressed here is the control of donor spin qubits in silicon architecture which have ultra-long quantum coherence time. We developed the quantum control scheme to realize the quantum metrology of magnetic field gradient, based on the celebrated Kane’s architecture for quantum computation. The scheme can also be generalized to calibrate the locations of the donors. In the third part of the thesis, we investigate a novel type of quantum dot formed in a new class of two-dimensional semiconductors, monolayer transition metal dichalcogenides (TMDs), which exhibit interesting spin and pseudospin physics. This novel quantum dot system may offer new opportunity for quantum spintronics in the ultimate 2D limit, and we investigate here the valley pseudospin as a possible quantum bit carrier. A main finding is that, contrary to the intuition, the lateral confinement by the quantum dot potential does not lead to noticeable valley hybridization, and therefore the valley pseudospin in monolayer TMDs QD can well inherit the valley physics such as the valley optical selection rules from the 2D bulk which implies a variety of quantum control possibilities. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
62

The micromaser theory and comparison to experiment

Johnson, David Brian 28 August 2008 (has links)
Not available / text
63

Trajectory integration of the quantum hydrodynamic equations of motion

Trahan, Corey Jason 28 August 2008 (has links)
Not available / text
64

Quantum optics with atom-like systems in diamond

Chu, Yiwen 06 June 2014 (has links)
The nitrogen vacancy (NV) center in diamond is a unique quantum system that combines solid state spin qubits with coherent optical transitions. The spin states of the NV center can be initialized, read out, and controlled with RF fields at room temperature. It can be coupled to other spin systems in the environment while at the same time maintaining an extraordinary degree of quantum coherence. Experiments utilizing the NV center's spin states have led to a wide range of demonstrations from quantum error correction to high-sensitivity magnetometry. This thesis, however, focuses on creating an interface between NV centers and light in the visible domain by making use of its optical transitions. Such an interface connects the quantum system consisting of NV centers and nuclear spins to photons, which can then be used to both manipulate the spin qubits themselves or transport quantum information over large distances. / Physics
65

Recent applications of the quantum trajectory method

Lopreore, Courtney Lynn 28 March 2011 (has links)
Not available / text
66

Topics in gravity

Kashani-Poor, Amir-Kian 27 April 2011 (has links)
Not available / text
67

Quantum mechanics : a review.

Katz, Hart January 1969 (has links)
No description available.
68

A comparison of the graphical and the renormalization groups analyses of quantum electrodynamics /

Marleau, Guy C. January 1979 (has links)
No description available.
69

Monte Carlo simulations in open quantum systems.

Van Ryn, Nicholas. January 2007 (has links)
The motivation for this Masters thesis is to develop numerical algorithms to study the dynamical evolution of non-Markovian open quantum systems. Such systems are of importance if one is interested in modeling solid state systems which are candidates for the qubit - the quantum analog of the binary digit. Such an example may be a trapped spin onto which is encoded a chosen spin state. In reality, such a spin is never completely isolated from the environment, and so from a practical point of view it is of interest to study the dynamics of this interaction between some open system with an environment. The goal here is to create a computer program to simulate this behaviour of all density matrix elements for the open system numerically. Many interesting quantum systems, spin chains as an example, do not behave as a Markovian process, and it is sometimes difficult or perhaps indeed impossible to derive exact analytical solutions. As such, the techniques used in this thesis are aimed at describing non-Markovian processes in a way that approaches the exact solution. The study begins by introducing the reader to important concepts and results in the general study of both closed and open quantum systems. Differences in the treatment of the two types of systems are pointed out, and the necessary standard equations used generally are presented. Additionally, two different techniques are explained for the study of open quantum systems, namely the density matrix approach and the stochastic wavefunction approach. Important results from these two methods are presented and the section ends by convincing the reader of their equivalence. The second chapter begins with an example of an open quantum system which exhibits non-Markovian behaviour. The model of the spin star system is described and important results are given from references. This chapter introduces the reader to the model, conceptually explaining the system, and going on to show its exact analytical behaviour. This basic model, with minor changes, will be used throughout this study and the physics, interactions and symmetries, does not really change. This study then shows how one can use the stochastic wavefunction method to solve the dynamics of the spin star model. This chapter follows with deriving stochastic equations for the same system as the preceding chapter, and using these equations a numerical algorithm is developed, the results of which provide a good comparison between the exact analytical and exact numerical techniques. As a further example, a similar but slightly more complex system is studied in exactly the same manner, with the only important difference being that the open quantum system to be modeled is now a spin-one particle. Important differences in the results are pointed out and explained, and important similarities are highlighted. In presenting the results of this second simulation, shortcomings of the numerical technique and areas of applicability are discussed. In the final chapter the author considers using this numerical technique's ability to completely map the dynamics for a density matrix to investigate a measure of quantumness for an open system. This research has been submitted for publication to a peer reviewed journal. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2007.
70

Relativistic Quantum Chemistry Applied to Actinides

Odoh, Samuel 07 January 2013 (has links)
Of the many available computational approaches, density functional theory is the most widely used in studying actinide complexes. This is generally because it incorporates electron correlation effects and is computationally inexpensive for modestly sized compounds. The first chapter of this thesis is an introductory chapter in which some basic concepts of electronic structure theory are discussed. The rest of this thesis is a compilation of several studies of the structural and electronic properties of a range of actinide compounds using predominantly density functional theory. The performances of the basis set/relativistic components as well as the density functional component of theoretical calculations were examined in Chapters 2 and 3 respectively. In Chapters 4, 5, 6 and 7, the electronic structures and properties of actinide species in the environment were explored. The speciation of actinyl aquo-hydroxo species at increasing pH values were studied in Chapter 4. In Chapter 5, the structural and electronic properties of uranyl peroxo complexes with other environmentally important ligands were studied. The adsorption of uranyl complexes to geochemical surfaces was studied in Chapter 6. In addition, the mechanistic pathways to the reduction of these complexes on surfaces and alcohols were examined. In chapter 7, the complexes formed by the uranyl moiety with the aquo and fluoride ligands were studied in gas and aqueous phases. The interactions of uranyl pentafluoride with a protein were examined using a hybrid QM/MM approach. Overall these studies (Chapters 4, 5, 6 and 7) provided valuable insights into the speciation and reduction of actinide species in the environment. In Chapter 8, the properties of novel pentavalent uranium complexes were studied using density functional theory. These complexes have promising roles in the retardation of uranium, via U(VI)-U(IV) reduction, in the environments of nuclear storage repositories. In Chapter 9, the existence of cation-cation interactions in an hexavalent bis-uranyl hydroxo complex was examined using density functional theory and wavefunction methods. In Chapter 10, a summary of the works compiled in this thesis is presented. Future directions for work on the chemistry of actinide complexes were also included in this chapter.

Page generated in 0.0353 seconds