Spelling suggestions: "subject:"kuantum communications"" "subject:"kuantum kommunications""
1 |
Encoding information into spatial modes of lightNdagano, Irenge Bienvenu January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, May 3, 2016. / Spatial modes of light hold the possibility to power the next leap in classical and
quantum communications. They provide the ability to pack more information into
light, even into single photons themselves, while increasing the level of information
security. In this quest, spatial modes carrying orbital angular momentum (OAM)
have come under the spotlight due to their discrete in nite dimensional Hilbert space
allowing, in theory, for an in nite amount of information to be carried by a photon.
Here we study, theoretically and experimentally, spatial modes of two
avours: scalar
and vector modes. the dichotomy between the two
avours is in their polarisation
characteristics: scalar modes have spatially homogeneous polarisation elds, while
vector modes do not. One facet of our work focusses on scalar mode carrying OAM;
using digital holographic methods, we demonstrate the techniques used to tailor and
analyse scalar optical elds. We discuss principles of generation and detection for
scalar modes based on manipulations of the dynamic phase of light with spatial light
modulators. We apply these techniques to characterise free-space and optical bre
links, and demonstrate an increase in bandwidth with the additional modal channels.
In the other facet of our work, we study vector vortex modes. A particular property
exhibited by these modes is the non-separability of their degrees of freedom, a property
traditionally associated with entangled quantum states. This raises the question:
could quantum entangled systems be modelled with bright sources of vector vortex
modes? We answer this question by applying vector vortex modes to the study
of quantum transport of entangled states. We borrow techniques from quantum
mechanics to evaluate the degree of non-separability of vector vortex modes, using
the concurrence as our measure. By determining the evolution of the concurrence, and
therefore the entanglement, of vector vortex modes in bres and free-space turbulent
channels, we show that indeed, bright classical sources can be used to model the
evolution of entangled quantum states in these channels. / TG2017
|
2 |
Teoria e implementaÃÃo de detectores de fÃtons isolados para comunicaÃÃes quÃnticas em redes Ãpticas / Theory and implementation of sigle-photon detectors for quantum communications in optical networksGeorge Andrà Pereira Thà 13 June 2006 (has links)
nÃo hà / Tecnologia da InformaÃÃo QuÃntica à uma Ãrea multidisciplinar nova que tem recebido muita atenÃÃo por ser promissora e devido a seu alto potencial em resolver problemas ainda nÃo solucionados. Dentro desta grande Ãrea, as ComunicaÃÃes QuÃnticas estÃo bastante desenvolvidas. Nesta sub-Ãrea, distribuiÃÃo QuÃntica de Chaves à o campo mais avanÃado. Ela permite que duas partes, chamadas Alice e Bob, compartilhem uma chave criptogrÃfica atravÃs de um canal seguro (seguranÃa garantida por leis da mecÃnica quÃntica). A maior parte dos Sistemas de DistribuiÃÃo QuÃntica de Chaves à executada em enlaces de fibras Ãpticas e, nestes sistemas, a mais importante parte à o Detector de FÃtons Isolados. Detector de FÃtons Isolados à um equipamento capaz de absorver um fÃton e gerar um sinal TTL. Assim, em um Detector de FÃtons Isolados ideal, cada fÃton que chega deve disparar um pulso TTL na saÃda. Dado que a energia de um fÃton isolado à muito baixa, um fotodiodo de avalanche à usado para realizar o processo absorÃÃo do fÃtongeraÃÃo de portador, uma vez que este fotodiodo, se corretamente polarizado, pode disparar uma avalanche de portadores detectÃvel. ApÃs a avalanche ter se iniciado, ela deve ser extinta para evitar qualquer dano ao fotodiodo, o que à feito por um circuito de extinÃÃo de avalanche. O fotodiodo de avalanche à o elemento mais importante de um Detector de FÃtons Isolados e sua caracterizaÃÃo requer muita atenÃÃo. Neste contexto, esta dissertaÃÃo lida com aspectos teÃricos e prÃticos de Detectores de FÃtons Isolados para ComunicaÃÃes QuÃnticas. Inicia com a teoria de fotodiodos de avalanche e circuitos de extinÃÃo (resultados numÃricos de circuitos de extinÃÃo tambÃm sÃo mostrados), e segue atà a caracterizaÃÃo de um Detector de FÃtons Isolados construÃdo em laboratÃrio e suas aplicaÃÃes em metrologia de dispositivos Ãpticos, bem como em resoluÃÃo de nÃmero de fÃtons. / Quantum Information Technology is a new multi-disciplinary area which has received a lot of attention due to its promises and its high potential in solving problems still unsolved. In this big area, Quantum Communication is too much developed. In this subarea, Quantum Key Distribution is the most advanced field. It permits two parties, named Alice and Bob, sharing a cryptography key through a secure channel (guaranteed by laws of quantum mechanics). The most of Quantum Key Distribution Systems run over optical fiber links and, in these systems, the most important part is the Single-Photon Detector. Single-Photon Detector is an equipment able to absorb a photon and generate a TTL pulse. Thus, in an ideal Single-Photon Detector, each photon incoming must trigger a TTL pulse at the output. Since the energy level of a single-photon is too much low, an avalanche photodiode is used to perform the photon absorption-carrier generation process, once this photodiode if correctly biased can trigger a detectable avalanche of carriers. After the avalanche has been started, it must be quenched in order to avoid any damage to the photodiode, which is made by an avalanche quenching circuit. The avalanche photodiode is the most important element of a Single-Photon Detector and its characterization requires much attention. In this context, this dissertation deals with theoretical and practical aspects of Single-Photon Detectors for Quantum Communication. It starts from the theory of avalanche photodiodes and quenching circuits (numerical results of quenching circuits are also shown) and follows until the characterization of a home-made Single-Photon Detector and its applications in Metrology of optical devices and in Photon-Number Resolution as well.
|
3 |
[en] PRACTICAL ASSETS FOR FIBER OPTICAL QUANTUM COMMUNICATIONS / [pt] RECURSOS PRÁTICOS PARA COMUNICAÇÕES QUÂNTICAS EM FIBRAS ÓPTICASGUILHERME BARRETO XAVIER 25 September 2009 (has links)
[pt] As comunicações quânticas estão rapidamente integrando-se às redes de fibras
ópticas, entretanto muitos desafios de engenharia ainda existem para essa
aglutinação. Esta tese discute algumas soluções práticas para a melhoria de
aplicações reais em comunicações quânticas em fibras ópticas. No primeiro
experimento uma fonte de pares de fótons emaranhados não-degenerados, de
banda-estreita, empregando conversão espontânea paramétrica descendente
(CEPD) é utilizada para demonstrar a viabilidade da distribuição quântica de
chaves (DQC) através de 27 km de fibras ópticas, com o canal de sincronismo
presente na mesma fibra com uma separação de 0.8 nm em comprimento de onda.
A outra demonstração utilizou uma fonte heráldica de fótons únicos também
baseada em CEPD para a realização de DQC através de 25 km de fibras ópticas
com a utilização do protocolo de decoy states pela primeira vez. Houve também
um estudo dos impactos gerados por ruído Raman espontâneo causado por um
canal óptico clássico presente na mesma fibra que o canal quântico. Um protocolo
para gerar números verdadeiramente aleatórios em um sistema de DQC
independente da taxa de transmissão do sistema é proposto, e um experimento
prova-de-princípio demonstra a idéia. Finalmente um sistema de controle
automático de polarização é utilizado para a realização de uma sessão de DQC
através de 16 km de fibras ópticas utilizando codificação em polarização, mesmo
sob a presença de um embaralhador rápido do estado de polarização. / [en] Quantum communications is quickly becoming integrated within fiber optical
networks and still many engineering challenges remain towards this interweaving.
This thesis deals with some practical solutions toward improving real-world
applications in quantum communications within optical fibers. In the first
experiment, a non-degenerate narrowband entangled pair single-photon source
based on spontaneous parametric down-conversion (SPDC) is used to show the
feasibility of performing quantum key distribution (QKD) through 27 km of
optical fiber, with the synchronization channel wavelength multiplexed in the
same fiber with a channel spacing of just 0.8 nm. A second experiment uses a
heralded single-photon source also based on SPDC to perform QKD over 25 km
of optical fiber with the decoy state modification for the first time. Then there is a
study of the problems caused by spontaneous Raman induced noise due to the
presence of a classical signal in the same fiber as the quantum channel. A protocol
to generate truly random numbers in a QKD setup independent of the system s
transmission rate is proposed, and a proof-of-principle experiment demonstrates
the idea. Finally an automatic polarization control system is used to perform a
QKD session over 16 km of optical fiber using polarization encoding, even in the
presence of a fast polarization scrambler.
|
4 |
Comunicação quântica e implementação de portas lógicas no sistema de cavidades acopladas / Quantum communication and logic gates implementation in coupled cavities systemYabu-uti, Bruno Ferreira de Camargo, 1982- 11 November 2013 (has links)
Orientador: Jose Antonio Roversi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-23T20:03:52Z (GMT). No. of bitstreams: 1
Yabu-uti_BrunoFerreiradeCamargo_D.pdf: 3039693 bytes, checksum: f0b083dd372cff54e492778d15824a5b (MD5)
Previous issue date: 2013 / Resumo: Na presente tese estudamos o processamento de informação quântica no sistema de átomos e cavidades acopladas. Em particular, a comunicação quântica estabelecida entre átomos remotos e a implementação de portas lógicas no sistema de cavidades acopladas. Iniciamos apresentando o sistema de cavidades acopladas, o Hamiltoniano que governa sua evolução, algumas promissoras implementações experimentais e a transferência de um estado de campo arbitrário de um fóton ao longo da cadeia. Incluindo um sistema massivo, propomos um novo protocolo para uma transferência perfeita, determinística e flexível de estados quânticos entre átomos remotos interagindo sucessivamente com o sistema de cavidades acopladas (atuando como quantum bus). Mesmo levando em conta efeitos dissipativos e erros de procedimento obtivemos uma alta fidelidade máxima de transmissão. Por fim, apresentamos uma proposta alternativa para a implementação de um porta R(rotação)- controlada de dois qubits. A proposta está baseada em operações de um qubit e fase geométrica não-convencional em átomos de três níveis idênticos fortemente bombeados por um campo clássico ressonante em cavidades ópticas distantes conectadas por uma fibra óptica. Nossa proposta resulta em um tempo operacional constante e, com um acoplamento qubit-bus ajustável (atomoressonador), pode-se especificar uma rotação R particular no qubit alvo / Abstract: In this thesis we study the quantum information processing in the system of atom-coupled cavity. In particular, the quantum communication between remote atoms and the implementation of logic gates in the coupled cavities system. We begin by presenting the system of coupled cavities, the Hamiltonian that governs its evolution, some promising experimental implementations and the transfer of an arbitrary one photon field state along the array. Including a massive system, we propose a new protocol for a perfect, deterministic and flexible quantum state transfer between remote atoms interacting successively with the system of coupled cavities (which act as a quantum bus). Even taking into account dissipative effects and error procedure we obtained a maximum high-fidelity transmission. We also present an alternative proposal for the implementation of a controlled-R gate of two qubits. The proposal is based on single qubit operations and unconventional geometric phases on two identical three-level atoms, strongly driven by a resonant classical field, trapped in distant cavities connected by an optical fiber. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit / Doutorado / Física / Doutor em Ciências
|
5 |
[pt] CONTROLE DA POLARIZAÇÃO DA LUZ EM FIBRAS ÓPTICAS MONOMODO E APLICAÇÕES / [en] POLARIZATION OF LIGHT CONTROL IN MONOMODE OPTICAL FIBERS AND APLICATIONS05 October 2009 (has links)
[pt] O controle de um estado de polarização, assim como o controle de todos os
estados de polarização da luz transmitida através de uma fibra óptica monomodo,
é realizado utilizando diferentes esquemas. O controle de polarização do sinal em
um canal DWDM é realizado, utilizando sinais de referência em canais laterais em
tempo contínuo. Uma troca de chave quântica codificada em polarização é
discutida e realizada, no canal central, graças ao sistema de controle de
polarização. A influência da distância espectral entre os canais e da PMD no
controle também é estudada. Dois protótipos foram construídos, um sistema de
controle de todos os estados de polarização e um compensador de PMD, e são
apresentados e descritos inteiramente, incluindo os resultados dos seus testes.
O compensador de PMD foi testado, e medidas de compensação de PMD em um
enlace de 43Gb/s foram realizadas em diversos formatos de modulação, bem
como, em diversas situações de embaralhamento de polarização, com e sem o uso
de FEC, a fim de avaliar a eficiência dos formatos de modulação, e a
compensação de PMD com linhas de atraso de secção simples e múltiplas. / [en] The control of polarization state, as well as a control of all states of
polarization of a light signal travelling through a singlemode optical fiber, is
performed using different schemes. The polarization control of the signal in a
DWDM channel is performed using reference signals in lateral channels in real
time. A polarization encoded quantum key distribution scheme is discussed and
performed in the central channel through the control system polarization. The
influence of the PMD and the spectral distance between channels in control is also
investigated theoretically and experimentally. Two prototypes were built, a full
polarization control system and a PMD compensator is shown and totally
described, as well their test results. Measurements of PMD compensation on a
link at 43Gb / s were performed in different modulation formats and in different
situations of polarization scrambling, with and without the use of FEC in order to
evaluate the efficiency of modulation formats, and PMD compensation with single
or multiple section delay lines.
|
6 |
A Radio-Frequency Synchronization System for Fiber-Optic Quantum NetworksStephen Donahue Chapman (18072259) 29 February 2024 (has links)
<p dir="ltr">This thesis discusses the use of a fiber optic system to synchronize GHz frequency radio-frequency signals over distances of up to 5 km and its future applications in quantum communications. The stability of the synchronization is assessed by an ‘identity gate’, where each radio-frequency signal drives a phase modulator, and the frequency profile of a continuous wave laser sent through both modulators indicates the stability of the RF signals relative to one another. Experimental results indicate that 19 GHz signals synchronized over 5.5 km drifted less than 1 ps over 30 minutes. This is superior to the radio-frequency synthesizers’ built in synchronization method and to other commonly used protocols. To illustrate an application, the system was employed in a quantum nonlocal modulation cancellation experiment. Joint spectral characterization of the biphotons shows that this synchronization scheme can be used for nodes in a quantum communications network. More specifically, possible future applications of this technology include use in a photonic quantum local area network at Oak Ridge National Laboratories.</p>
|
7 |
Génération électrique de lumière intriquée destinée au transfert optique d'information quantique / Electrically generated entangled light for optical quantum information applicationsNilsson, Jonas 19 September 2013 (has links)
Les boites quantiques de semiconducteurs représentent une voie attractive pour la réalisation de sources de photon efficaces pour le transfert quantique de l’information, avec un fort potentiel de miniaturisation et d’intégration. Dans ce travail, les paires de photons intriqués sont générées via le déclin radiatif de bi-excitons, à partir de boite quantiques d’InAs auto-assemblées placé dans une jonction p-i-n. Dans une première série d’expérience d’interférence à deux photons, nous avons démontré des corrélations de polarisation non classiques et la capacité de deux photons à interférer. L’intrication a été démontrée avec une fidélité de 0.87±0.04, et une visibilité des interférences de 0.60±0.05. Nous avons ensuite réalisé le premier téléporteur injecté électriquement dans un circuit à fibre monomode. Une fidélité moyenne de 0.704±0.016 a été mesurée pour 6 états distribués symétriquement sur la sphère de Poincaré, ce qui supérieur à la limite classique de 2/3 et prouve la téléportation. Un dispositif modifié de téléportation permettant d’injecter des photons à partir d’un laser continu indépendant a été développé. L’interférence à deux photons entre sources différentes a été démontrée et des battements quantiques observés. La téléportation quantique des états de polarisation portés par les photons a été obtenue avec une fidélité moyenne 0.76±0.012. Le contrôle du spin des charges confinés dans les nanostructures tels que les boites quantiques requiert une compréhension profonde de la physique des matériaux constituant, y compris au niveau nucléaire. Ainsi, nous avons démontré le contrôle électrique de l’interaction hyperfine entre les spins électroniques et nucléaires en utilisant un composant à charge ajustable. La modélisation suggère que le mécanisme est contrôlé par le temps de corrélation hyperfine de l’électron et le temps de dépolarisation du noyau. / Semiconductor quantum dots offer an attractive route towards efficient and high-quality photon sources for optical quantum information applications, with potential for miniaturization and integration on chip. Here, entangled photon pairs are generated in the biexcitonic radiative cascade resulting from electrical excitation of InAs self-assembled quantum dots placed in a p-i-n diode. In a first set of experiments the non-classical polarisation correlations and the ability to interfere the photons in two-photon interference experiments was verified, finding entanglement fidelities of up to 0.87±0.04 and interference visibilities up to 0.60±0.05. Encouraged by the two-photon interference experiments, the first directly electrically driven teleporter was implemented in a single-mode fibre circuit. An average fidelity of 0.704±0.016 was achieved for six states symmetrically distributed on the Poincaré sphere, beating the classical limit of 2/3 and proving that quantum teleportation is taking place. A modified teleportation setup allowed for the accommodation of input photons from an independent CW laser. Two-photon interference between the dissimilar light sources was demonstrated and quantum beats could be observed. Quantum teleportation of polarisation states carried by laser photons was then performed with average fidelity 0.76±0.012. Controlling confined charge carriers in nano-scale systems such as quantum dots requires a deep understanding of the underlying material physics, even on the nuclear level. Voltage control of electron-nuclear hyperfine spin interactions was demonstrated using a charge-tuneable device. Modelling suggests that the mechanism is controlled mainly via the electron hyperfine correlation time and the nuclear depolarisation time.
|
8 |
Quantum cryptography and quantum cryptanalysisMakarov, Vadim January 2007 (has links)
<p>This doctoral thesis summarizes research in quantum cryptography done at the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU) from 1998 through 2007.</p><p>The opening parts contain a brief introduction into quantum cryptography as well as an overview of all existing single photon detection techniques for visible and near infrared light. Then, our implementation of a fiber optic quantum key distribution (QKD) system is described. We employ a one-way phase coding scheme with a 1310 nm attenuated laser source and a polarization-maintaining Mach-Zehnder interferometer. A feature of our scheme is that it tracks phase drift in the interferometer at the single photon level instead of employing hardware phase control measures. An optimal phase tracking algorithm has been developed, implemented and tested. Phase tracking accuracy of +-10 degrees is achieved when approximately 200 photon counts are collected in each cycle of adjustment. Another feature of our QKD system is that it uses a single photon detector based on a germanium avalanche photodiode gated at 20 MHz. To make possible this relatively high gating rate, we have developed, implemented and tested an afterpulse blocking technique, when a number of gating pulses is blocked after each registered avalanche. This technique allows to increase the key generation rate nearly proportionally to the increase of the gating rate. QKD has been demonstrated in the laboratory setting with only a very limited success: by the time of the thesis completion we had malfunctioning components in the setup, and the quantum bit error rate remained unstable with its lowest registered value of about 4%.</p><p>More than half of the thesis is devoted to various security aspects of QKD. We have studied several attacks that exploit component imperfections and loopholes in optical schemes. In a large pulse attack, settings of modulators inside Alice's and Bob's setups are read out by external interrogating light pulses, without interacting with quantum states and without raising security alarms. An external measurement of phase shift at Alice's phase modulator in our setup has been demonstrated experimentally. In a faked states attack, Eve intercepts Alice's qubits and then utilizes various optical imperfections in Bob's scheme to construct and resend light pulses in such a way that Bob does not distinguish his detection results from normal, whereas they give Bob the basis and bit value chosen at Eve's discretion. Construction of such faked states using several different imperfections is discussed. Also, we sketch a practical workflow of breaking into a running quantum cryptolink for the two abovementioned classes of attacks. A special attention is paid to a common imperfection when sensitivity of Bob's two detectors relative to one another can be controlled by Eve via an external parameter, for example via the timing of the incoming pulse. This imperfection is illustrated by measurements on two different single photon detectors. Quantitative results for a faked states attack on the Bennett-Brassard 1984 (BB84) and the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocols using this imperfection are obtained. It is shown how faked states can in principle be constructed for quantum cryptosystems that use a phase-time encoding, the differential phase shift keying (DPSK) and the Ekert protocols. Furthermore we have attempted to integrate this imperfection of detectors into the general security proof for the BB84 protocol. For all attacks, their applicability to and implications for various known QKD schemes are considered, and countermeasures against the attacks are proposed.</p><p>The thesis incorporates published papers [J. Mod. Opt. 48, 2023 (2001)], [Appl. Opt. 43, 4385 (2004)], [J. Mod. Opt. 52, 691 (2005)], [Phys. Rev. A 74, 022313 (2006)], and [quant-ph/0702262].</p>
|
9 |
Quantum cryptography and quantum cryptanalysisMakarov, Vadim January 2007 (has links)
This doctoral thesis summarizes research in quantum cryptography done at the Department of Electronics and Telecommunications at the Norwegian University of Science and Technology (NTNU) from 1998 through 2007. The opening parts contain a brief introduction into quantum cryptography as well as an overview of all existing single photon detection techniques for visible and near infrared light. Then, our implementation of a fiber optic quantum key distribution (QKD) system is described. We employ a one-way phase coding scheme with a 1310 nm attenuated laser source and a polarization-maintaining Mach-Zehnder interferometer. A feature of our scheme is that it tracks phase drift in the interferometer at the single photon level instead of employing hardware phase control measures. An optimal phase tracking algorithm has been developed, implemented and tested. Phase tracking accuracy of +-10 degrees is achieved when approximately 200 photon counts are collected in each cycle of adjustment. Another feature of our QKD system is that it uses a single photon detector based on a germanium avalanche photodiode gated at 20 MHz. To make possible this relatively high gating rate, we have developed, implemented and tested an afterpulse blocking technique, when a number of gating pulses is blocked after each registered avalanche. This technique allows to increase the key generation rate nearly proportionally to the increase of the gating rate. QKD has been demonstrated in the laboratory setting with only a very limited success: by the time of the thesis completion we had malfunctioning components in the setup, and the quantum bit error rate remained unstable with its lowest registered value of about 4%. More than half of the thesis is devoted to various security aspects of QKD. We have studied several attacks that exploit component imperfections and loopholes in optical schemes. In a large pulse attack, settings of modulators inside Alice's and Bob's setups are read out by external interrogating light pulses, without interacting with quantum states and without raising security alarms. An external measurement of phase shift at Alice's phase modulator in our setup has been demonstrated experimentally. In a faked states attack, Eve intercepts Alice's qubits and then utilizes various optical imperfections in Bob's scheme to construct and resend light pulses in such a way that Bob does not distinguish his detection results from normal, whereas they give Bob the basis and bit value chosen at Eve's discretion. Construction of such faked states using several different imperfections is discussed. Also, we sketch a practical workflow of breaking into a running quantum cryptolink for the two abovementioned classes of attacks. A special attention is paid to a common imperfection when sensitivity of Bob's two detectors relative to one another can be controlled by Eve via an external parameter, for example via the timing of the incoming pulse. This imperfection is illustrated by measurements on two different single photon detectors. Quantitative results for a faked states attack on the Bennett-Brassard 1984 (BB84) and the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocols using this imperfection are obtained. It is shown how faked states can in principle be constructed for quantum cryptosystems that use a phase-time encoding, the differential phase shift keying (DPSK) and the Ekert protocols. Furthermore we have attempted to integrate this imperfection of detectors into the general security proof for the BB84 protocol. For all attacks, their applicability to and implications for various known QKD schemes are considered, and countermeasures against the attacks are proposed. The thesis incorporates published papers [J. Mod. Opt. 48, 2023 (2001)], [Appl. Opt. 43, 4385 (2004)], [J. Mod. Opt. 52, 691 (2005)], [Phys. Rev. A 74, 022313 (2006)], and [quant-ph/0702262].
|
10 |
[en] MODULATION SCHEMES FOR FREQUENCY CODED QUANTUM KEY DISTRIBUTION / [pt] ESQUEMAS DE MODULAÇÃO PARA DISTRIBUIÇÃO QUÂNTICA DE CHAVES COM CODIFICAÇÃO DE FREQÜÊNCIAGUILHERME BARRETO XAVIER 20 May 2005 (has links)
[pt] A criptografia quântica foi proposta como uma solução para
o problema da
distribuição de chaves criptográficas com segurança total
garantida pelos
princípios da mecânica quântica. Através dessa técnica é
possível saber se um
espião tentou interceptar a transmissão, o que é impossível
utilizando técnicas de
transmissão clássicas. Nesse trabalho foi feito um breve
resumo da teoria de
criptografia quântica, de suas técnicas de transmissão e
dos problemas
tecnológicos enfrentados. Foi analisada em detalhes a
técnica de transmissão de
qubits utilizando codificação de freqüência e feita uma
comparação dos diferentes
esquemas de modulação frente aos protocolos BB84 e B92. Foi
demonstrado que
os dois esquemas de modulação existentes (AM-AM e PM-PM)
são na realidade
equivalentes e foi proposto um novo esquema, o AM-PM o
único que suporta o
protocolo BB84 clássico. Medidas foram realizadas
classicamente nos formatos
AM-AM e AM-PM. / [en] Quantum cryptography has been proposed as a solution to the
cryptographic
key distribution problem with absolute security guaranteed
by the principles of
quantum mechanics. Through this scheme it is possible to
find out whether a spy
tried to eavesdrop on the transmission, which was
impossible to discover using
classical transmission techniques. In this work a brief
review of quantum
cryptography theory, transmission techniques and
technological problems
involved were performed. It was analyzed in detail the
transmission technique
employing frequency coding, and a comparison was made
between the different
modulation schemes and the BB84 and B92 protocols. It was
demonstrated that
the two existing modulation formats (AM-AM and PM-PM) are
in fact equivalent
and a new format (AM-PM) was proposed, the only one able to
accommodate
classical BB84. Classical measurements were performed on
the AM-AM and AMPM
formats.
|
Page generated in 0.1312 seconds