• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chern-Simons Theory and the Fractional Quantum Hall Effects in Graphene

Cai, Feng January 2012 (has links)
Thesis advisor: Ziqiang Wang / Graphene has emerged as an important two dimensional electron system with novel physical properties due to its relativistic-like linear energy-momentum dispersion relation at low energy. Alongside two dimensional electron systems in semiconductor heterostructures, it has a rich set of integer and fractional quantum Hall states. Significant progresses have been made recently, but a full understanding of these states is still lacking. The prevailing approach for fractional quantum Hall effects in graphene has been the numerical exact diagonalization. In this work, we develop a fermionic Chern-Simons effective theory for Dirac fermions as a complement to the existing theories, and to bring new insights in our understanding of the phenomena. In particular, we study the possibility for quantum Hall plateaus at even-denominator filling factors. We first construct a unitary Chern-Simons transformation to attach even number of flux quanta to Dirac fermions. To deal with the four-fold spin-valley degeneracy, a set of K-matrices is introduced. At even-denominator filling factors in the zeroth Landau level, the fictitious magnetic field of the Chern-Simons field cancels the external magnetic field on average. It is shown that the Chern-Simons field mediates an effective mutual statistical interaction between composite Dirac fermions. We further show the statistical interaction and Coulomb interaction favor the formation of an exciton condensate. Quasi-particles at finite filling factors can be regarded as excita- tions above the exciton condensate, and can be described as massive Dirac fermions. This means a mass is generated dynamically for Dirac fermions. Different types of K-matrices give rise to different mass gaps. The Chern numbers associated with different massive Dirac band structures can be used to classify the K-matrices. In the last part of the thesis, we study the pairing instability of the composite Dirac fermion liquid. We show the statistical interaction drives a complex p-wave pairing among the quasi-particles. As long as the Coulomb pair breaking effect is weak, the system can develop a superconducting energy gap, thus form a fractional quantum Hall state. / Thesis (PhD) — Boston College, 2012. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
2

MULTI-ELECTRON BUBBLE PHASES

Dohyung Ro (9142649) 05 August 2020 (has links)
<div>Strong electronic correlations in many-body systems are cradles of new physics. They give birth to novel collective states hosting emergent quasiparticles as well as intriguing geometrical charge patterns. Two-dimensional electron gas in GaAs/AlGaAs under perpendicular magnetic field is one of the most well-known hosts in condensed matter physics where a plethora of the collective states appear. In the strong magnetic field regime, strong Coulomb interactions among the electrons create emergent quasiparticles, i.e. composite fermions and Cooper-paired composite fermions. In the weak magnetic field regime, modified Coulomb interactions drive electron solid phases having geometrical charge patterns in the shape of stripes and bubbles and lower the spatial symmetry of the states.</div><div><br></div><div>The fascinating charge order in bubble geometry is the electron bubble phase predicted first by the Hartree-Fock theory. In a bubble phase, certain number of electrons cluster as an entity called bubble and the bubbles order into a crystal of triangular lattice. In addition to the Hartree-Fock theory, the density matrix renormalization group and the exact diagonalization methods further support the formation of electronic bubbles.</div><div><br></div><div>Reentrant integer quantum Hall states are commonly accepted as the manifestations of the bubble phases in transport experiment. Soon after the first prediction of the Hartree-Fock theory, the reentrant integer quantum Hall states were observed in the third and higher Landau levels. Since then, the association to the bubble phases has been tested with different experimental techniques for decades.</div><div><br></div><div>Although the experimental results from different methods support the bubble phase picture of the reentrant integer quantum Hall states, the electron confinement under the quantum well structure hindered direct scanning of bubble morphology. Thus none of the experiments could showcase the bubble morphology of the reentrant integer quantum Hall states. Meanwhile, a significant discrepancy still remained in between the bubble theories and the experiments. Even though the bubble theories predict the proliferation of bubble phases with increasing orbital index, none of the experiments could observe multiple reentrant integer quantum Hall states in a high Landau level, which signify the multiple bubble formation. Therefore, the proliferation of bubble phases with increasing Landau level index was pessimistic. </div><div><br></div><div>In this Dissertation, I present my research on solving this discrepancy. In chapter 4, we performed a magnetotransport measurement of reentrant integer quantum Hall states in the third and higher Landau levels at various different temperatures. Then, we scrutinized how each of the reentrant integer quantum Hall states develops with the gradual increase of the temperature. As a result, we observed multiple reentrant integer quantum Hall states in the fourth Landau level which are associated with the two- and three-electron bubble phases. This result strongly supports the bubble phase picture of the reentrant integer quantum Hall states by confirming the possibility of the proliferation of bubble phases in high Landau levels.</div><div><br></div><div>In chapter 5, I analyzed the energetics of newly resolved two- and three-electron bubble phases in the fourth Landau level as well as those of two-electron bubble phases in the third Landau level. Here, I first found, in the fourth Landau level, the three-electron bubbles are more stable than the two-electron bubbles indicating that the multi-electron bubbles with higher electron number are more stable within a Landau level. Secondly, I found distinct energetic features of two- and three-electron bubble phases which are independent of Landau level index throughout the third and the fourth Landau levels. These results highlight the effect of the number of electrons per bubble on the energetics of multi-electron bubble phases and are expected to contribute on improving the existing Hartree-Fock theories.</div>
3

Gaz électronique bidimensionnel de haute mobilité dans des puits quantiques de CdTe : études en champ magnétique intense / High mobility two-dimensional electron gas in CdTe quantum wells : high magnetic field studies.

Kunc, Jan 14 February 2011 (has links)
Une étude expérimentale de gaz d'électrons bidimensionnel confinés dans des puits quantiques de CdTe et de CdMnTe est présentée. L'analyse de données est soutenue par des calculs numériques de la structure de bande des états confinés, utilisant l'approximation de densité locale et de fonction enveloppe. Un calcul de type k.p a été utilisé pour justifier l'approximation parabolique appliquée pour les bandes valence. Les échantillons ont été caractérisés par spectroscopie Raman et par spectroscopie d'absorption de la résonance cyclotron infrarouge. Le magnéto-transport à bas champ est dominé par la contribution semi-classique de Drude et révèle trois contributions plus faibles, qui sont la localisation faible, l'interaction électron-électron et les oscillations Shubnikov-De Haas. La contribution des interactions électron-électron est expliquée dans un modèle semi-classique à trajectoire circulaire. La forme des niveaux de Landau, leurs élargissement, les temps de vie transport et quantique de la diffusion et le mécanisme (long-portée) de la diffusion dominant ont été déterminés. Le magnéto-transport sous champs magnétiques intenses révèle la présence d'états Hall quantique fractionnaires dans les niveaux de Landau N=0 et N=1. Nous avons montré, que les états 5/3 et 4/3 étaient complètement polarisés en spin, en accord avec l'approche des fermions composites pour l'effet Hall quantique fractionnaire. La forme de la photoluminescence à champ magnétique nul et son évolution avec la température sont décrites par un modèle analytique simple. La dépendance en champ magnétique et en température de la photoluminescence indique que le gap de spin est amplifié dans les niveaux de landau entièrement occupés. Ces effets multi-corps de l'amplification du gap du spin ont été décrits avec succès par un modèle numérique simple. L'intensité de la photoluminescence a mise en évidence l'importance des processus non-radiatifs pendant la recombinaison, la dégénérescence des niveaux de Landau, leur taux d'occupation, les règles de sélection et l'influence de l'écrantage. Le mécanisme de la relaxation parallèle de spin d'électron et de trou a été identifié et attribué au mécanisme Bir-Aharonov-Pikus, assistée par les phonons acoustiques. Les spectres de photoluminescence d'excitation reflètent la densité des états caractéristique des systèmes bidimensionnels. Les résonances excitoniques, qui sont observées aux bords des sous-bandes électriques inoccupées, illustrent l'importance de l'écrantage et des champs électriques intrinsèques dans les puits asymétriquement dopés. / Experimental studies of two-dimensional electron gases confined in CdTe and CdMnTe quantum wells are presented. The data analysis is supported by numerical calculations of the band structure of confined states, using the local density and envelope function approximations. Four by four, k.p calculations have been performed to justify the parabolic approximation of valence bands. Samples were characterized by Raman scattering spectroscopy and far infrared cyclotron resonance absorption measurements. Low-field magneto-transport shows the dominant contribution of the semi-classical Drude conductivity and ten times weaker contributions of weak localization, electron-electron interaction and Shubnikov-de Haas oscillations. The contribution of electron-electron interactions is explained within a semi-classical model of circling electrons. The shape of Landau levels, broadening, transport and quantum lifetimes and dominant long-range scattering mechanism have been determined. High-field magneto-transport displays fractional quantum Hall states at Landau levels N=0 and N=1. The ground states 5/3 and 4/3 have been determined to be fully spin polarized, in agreement with the approach of composite fermions for the fractional quantum Hall effect. The form of the photoluminescence at zero magnetic field and its evolution with temperature have been described by simple analytical model. Magnetic field and temperature dependence of the photoluminescence has been found to display the enhanced spin splitting of fully occupied Landau levels. This many body enhanced spin gap has been successfully described by a numerical model. The intensity of the photoluminescence demonstrated the importance of the non-radiative recombination channel, degeneracy of Landau levels, their occupation, selection rules and screening. The mechanism of the simultaneous electron and hole spin-flip was recognized and attributed to the longitudinal acoustical phonon assisted Bir-Aharonov-Pikus spin relaxation mechanism. Photoluminescence excitation spectra embody the characteristic density of states of two-dimensional systems. The excitonic resonances, which are observed at the edges of unoccupied electric subbands, illustrate the importance of screening and internal electric fields in asymmetrically doped quantum wells.

Page generated in 0.0536 seconds