• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 73
  • 73
  • 73
  • 40
  • 22
  • 19
  • 18
  • 14
  • 13
  • 13
  • 13
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Informação quântica via ressonância quadrupolar nuclear / Quantum information by nuclear quadrupole resonance

Christian Rivera Ascona 14 August 2015 (has links)
Neste trabalho realizamos a implementação experimental de informação quântica (IQ) em um sistema de dois bits quânticos (q-bits) de spin 3/2 via ressonância quadrupolar nuclear (RQN). Foram implementadas portas lógicas quânticas que são necessárias para a criação e manipulação dos estados pseudo-puros (PPSs). Ademais, foi proposto um método de tomografia de estado quântico (TEQ) baseado na seleção de coerências de múltiplo quantum por ciclagem de fases. A TEQ foi empregada para avaliar os estados quânticos implementados experimentalmente. A amostra utilizada foi um monocristal de KClO3, o núcleo medido foi 35Cl, que possui spin 3/2. Neste sistema foi possível obter os quatro PPSs da base computacional. Sobre os PPSs foram aplicados portas lógicas quânticas CNOT e Hadamard, que produziram estados de sobreposição e estados emaranhados. Sobre os estados emaranhados foram analisados os conceitos de correlações clássicas e quânticas. A TEQ dos estados implementados experimentalmente mostrou altas fidelidades (maior de 90%). Também foi possível criar estados coerentes de spin aplicando rotações sobre os PPSs. Com base nos estados coerentes de spin foram gerados estados coerentes comprimidos mediante a aplicação de evoluções não lineares, presentes naturalmente em sistemas de RQN. Estes resultados promissores mostram que a RQN pode ser satisfatoriamente aplicada como uma ferramenta experimental em estudos de IQ. / In this work we describe the experimental implementation of quantum information processing (QIP) in a two spin qubits system by nuclear quadrupole resonance (NQR). We implemented quantum gates and their applications in the creation and manipulation of pseudo-pure state (PPS). Furthermore, we propose one method of Quantum State Tomography (QST) based on coherence pathways selected by RF phase cycling. QST is one of the tools used to evaluate QIP implementations, it allows to completely evaluate the quantum state of the spin system. We experimentally implemented NQR-QIP in a KClO3 single crystal and observing 35Cl, a spin 3/2 nucleus. It was possible to obtain all the four PPS associated with the computational basis and to apply the Controlled-not (CNOT) and Hadamard gates on them. The reading of the resulting states was performed by the proposed QST method, and resulted in experimental quantum state fidelities greater than 90%. It was also possible to create squeezed spin states. This states are generated by non linear interactions, which naturally arise in a NQR system. These are very promising results and they indicate that NQR can be successfully applied as an experimental tool for studying fundamental QIP theory.
32

Optimization Of NMR Experiments Using Genetic Algorithm : Applications In Quantum Infomation Processing, Design Of Composite Operators And Quantitative Experiments

Manu, V S 12 1900 (has links) (PDF)
Genetic algorithms (GA) are stochastic global search methods based on the mechanics of natural biological evolution, proposed by John Holland in 1975. Here in this thesis, we have exploited possible utilities of Genetic Algorithm optimization in Nuclear Magnetic Resonance (NMR) experiments. We have performed (i ) Pulse sequence generation and optimization for NMR Quantum Information Processing, (ii ) efficient creation of NOON states, (iii ) Composite operator design and (iv ) delay optimization for refocused quantitative INEPT. We have generated time optimal as well as robust pulse sequences for popular quantum gates. A Matlab package is developed for basic Target unitary operator to pulse sequence optimization and is explained with an example. Chapter 1 contains a brief introduction to NMR, Quantum computation and Genetic algorithm optimization. Experimental unitary operator decomposition using Genetic Algorithm is explained in Chapter 2. Starting from a two spin homonu- clear system (5-Bromofuroic acid), we have generated hard pulse sequences for performing (i ) single qubit rotation, (ii ) controlled NOT gates and (iii ) pseudo pure state creation, which demonstrates universal quantum computation in such systems. The total length of the pulse sequence for the single qubit rotation of an angle π/2 is less than 500µs, whereas the conventional method (using a selective soft pulse) would need a 2ms shaped pulse. This substantial shortening in time can lead to a significant advantage in quantum circuits. We also demonstrate the creation of Long Lived Singlet State and other Bell states, directly from thermal equilibrium state, with the shortest known pulse sequence. All the pulse sequences generated here are generic i.e., independent of the system and the spectrometer. We further generalized this unitary operator decomposition technique for a variable operators termed as Fidelity Profile Optimization (FPO) (Chapter 3) and performed quantum simulations of Hamiltonian such as Heisenberg XY interaction and Dzyaloshinskii-Moriya interaction. Exact phase (φ) dependent experimental unitary decompositions of Controlled-φ and Controlled Controlled-φ are solved using first order FPO. Unitary operator decomposition for experimental quantum simulation of Dzyaloshinskii-Moriya interaction in the presence of Heisenberg XY interaction is solved using second order FPO for any relative strengths of interactions (γ) and evolution time (τ ). Experimental gate time for this decomposition is invariant under γ or τ , which can be used for relaxation independent studies of the system dynamics. Using these decompositions, we have experimentally verified the entanglement preservation mechanism suggested by Hou et al. [Annals of Physics, 327 292 (2012)]. NOON state or Schrodinger cat state is a maximally entangled N qubit state with superposition of all individual qubits being at |0 and being at |1 . NOON states have received much attention recently for their high precession phase measurements, which enables the design of high sensitivity sensors in optical interfer- ometry and NMR [Jones et al. Science, 324 1166(2009)]. We have used Genetic algorithm optimization for efficient creation of NOON states in NMR (Chapter 4). The decompositions are, (i ) a minimal in terms of required experimental resources – radio frequency pulses and delays – and have (ii ) good experimental fidelity. A composite pulse is a cluster of nearly connected rf pulses which emulate the effect of a simple spin operator with robust response over common experimental imperfections. Composite pulses are mainly used for improving broadband de- coupling, population inversion, coherence transfer and in nuclear overhauser effect experiments. Composite operator is a generalized idea where a basic operator (such as rotation or evolution of zz coupling) is made robust against common experimental errors (such as inhomogeneity / miscalibration of rf power or errror in evaluation of zz coupling strength) by using a sequence of basic operators available for the system. Using Genetic Algorithm optimization, we have designed and experimentally verified following composite operators, (i ) broadband rotation pulses, (ii ) rf inhomogeneity compensated rotation pulses and (iii ) zz evolution operator with robust response over a range of zz coupling strengths (Chapter 5). We also performed rf inhomogeneity compensated Controlled NOT gate. Extending Genetic Algorithm optimization in classical NMR applications, we have improved the quantitative refocused constant-time INEPT experiment (Q-INEPT- CT) of M¨kel¨ et al. [JMR 204(2010) 124-130] with various optimization constraints . The improved ‘average polarization transfer’ and ‘min-max difference’ of new delay sets effectively reduces the experimental time by a factor of two (compared with Q-INEPT-CT, M¨kel¨ et al.) without compromising on accuracy (Chapter 6). We also introduced a quantitative spectral editing technique based on average polarization transfer. These optimized quantitative experiments are also described in Chapter 6. Time optimal pulse sequences for popular quantum gates such as, (i ) Controlled Hadamard (C-H) gate, (ii ) Controlled-Controlled-NOT (CCNOT) Gate and (iii ) Controlled SWAP (C-S) gate are optimized using Genetic Algorithm (Appendix. A). We also generated optimal sequences for Quantum Counter circuits, Quantum Probability Splitter circuits and efficient creation of three spin W state. We have developed a Matlab package based on GA optimization for three spin target operator to pulse sequence generator. The package is named as UOD (Unitary Operator Decomposition) is explained with an example of Controlled SWAP gate in Appendix. B. An algorithm based on quantum phase estimation, which discriminates quantum states non-destructively within a set of arbitrary orthogonal states, is described and experimentally verified by a NMR quantum information processor (Appendix. C). The procedure is scalable and can be applied to any set of orthogonal states. Scalability is demonstrated through Matlab simulation.
33

Generation of heralded single photons in pure quantum states

Mosley, Peter James January 2007 (has links)
Single photons - discrete wavepackets of light - are one of the most fundamental entities in physics. In recent years, the ability to consistently create and manipulate both single photons and pairs of photons has facilitated everything from tests of quantum theory to the implementation of quantum-enhanced precision measurements. These activities all fall within the scope of the rapidly-growing field of quantum information - the exploitation of the properties of quantum states (and specifically their capability to exist in superpositions) to accomplish tasks that would not be possible with classical objects. One stated goal of research in quantum information is to build a device consisting of a network of quantum logic gates that can evaluate quantum algorithms. The photonic implementation of individual logic gates has already been demonstrated. However, partly due to standard methods of preparing single photons, current schemes have severe limitations in terms of scaling up from a single logic gate to multiple concatenated operations. Until now it has not been proven that single photons can be generated in pure and indistinguishable quantum states, something upon which the successful operation of optical quantum logic gates relies. This thesis presents an experimental demonstration of simultaneous generation of almost identical single photons in highly pure states from two independent sources based on parametric downconversion. This is a process of photon pair generation during the passage of a light beam through a nonlinear crystal; one photon from the resulting pair is detected to herald the other. The work herein describes, refines, and implements a technique that minimises the strong quantum correlations usually present within each pair by spectral engineering of the source. This allows the heralded single photons to be in pure states, a property that is confirmed by observing a high-visibility two-photon interference effect without spectral filtering.
34

Single photon sources in the infrared

Wang, Xu January 2011 (has links)
This thesis reports the study of single photon sources that emit one infrared wavelength photon at a time, creating cavity quantum electrodynamical effects for applications such as quantum information processing. This work considers two major single photon sources: a) InAs single quantum dots and b) single carbon nanotubes, which both emit in the infrared range. Photonic crystal slabs and photonic crystal waveguides are served as distinctive passive devices with manipulated photonic band-gaps to control the propagating light. A simulation of leaky modes of two-dimensional photonic crystal slabs is introduced to constrain model parameters in the device design. Fullerenes are used as fluorescent material to achieve resonance of a leaky mode with excitation 1492 nm and emission at 1519 nm and to see enhancement of the PL. We include novel characterization techniques and PL measurements to show sharp emission peaks from single quantum dots and successfully couple them to micro-cavities. The strong coupling effect is observed and is amongst the best examples of cavity-dot structures achieved to date. Single-walled carbon nanotubes have shown anti-bunched light emission, thus we systematically study them as another possible candidate of single photon sources. PLE spectra show clear evidence of the existence of excited states, and time evolution measurements reveal the disorder induced diffusion, which separate the tubes into a series of quantum dots. These strongly confined states are concluded as the origin of the possibility that single-walled carbon nanotubes are single photon sources.
35

Creation and control of entanglement in condensed matter spin systems

Simmons, Stephanie January 2011 (has links)
The highly parallel nature of the fundamental principles of quantum mechanics means that certain key resource-intensive tasks --- including searching, code decryption and medical, chemical and material simulations --- can be computed polynomially or even exponentially faster with a quantum computer. In spite of its remarkably fast development, the field of quantum computing is still young, and a large-scale prototype using any one of the candidate quantum bits (or 'qubits') under investigation has yet to be developed. Spin-based qubits in condensed matter systems are excellent candidates. Spins controlled using magnetic resonance have provided the first, most advanced, and highest fidelity experimental demonstrations of quantum algorithms to date. Despite having highly promising control characteristics, most physical ensembles investigated using magnetic resonance are unable to produce entanglement, a critical missing ingredient for a pure-state quantum computer. Quantum objects are said to be entangled if they cannot be described individually: they remain fundamentally linked regardless of their physical separation. Such highly non-classical states can be exploited for a host of quantum technologies including teleportation, metrology, and quantum computation. Here I describe how to experimentally create, control and characterise entangled quantum ensembles using magnetic resonance. I first explore the relationship between entanglement and quantum metrology and demonstrate a sensitivity enhancement over classical resources using molecular sensors controlled with liquid-state nuclear magnetic resonance. I then examine the computational potential of irreversible relaxation processes in combination with traditional reversible magnetic resonance control techniques. I show how irreversible processes can polarise both nuclear and electronic spins, which improves the quality of qubit initialisation. I discuss the process of quantum state tomography, where an arbitrary quantum state can be accurately measured and characterised, including components which go undetected using traditional magnetic resonance techniques. Lastly, I combine the above findings to initialise, create and characterise entanglement between an ensemble of electron and nuclear spin defects in silicon. I further this by generating pseudo-entanglement between an ensemble of nuclear spins mediated by a transient electron spin in a molecular system. These findings help pave the way towards a particular architecture for a scalable, spin-based quantum computer.
36

Collective dynamics of solid-state spin chains and ensembles in quantum information processing

Ping, Yuting January 2012 (has links)
This thesis is concerned with the collective dynamics in different spin chains and spin ensembles in solid-state materials. The focus is on the manipulation of electron spins, through spin-spin and spin-photon couplings controlled by voltage potentials or electromagnetic fields. A brief review of various systems is provided to describe the possible physical implementation of the ideas, and also outlines the basis of the adopted effective interaction models. The first two ideas presented explore the collective behaviour of non-interacting spin chains with external couplings. One focuses on mapping the identical state of spin-singlet pairs in two currents onto two distant, static spins downstream, creating distributed entanglement that may be accessed. The other studies a quantum memory consisting of an array of non-interacting, static spins, which may encode and decode multiple flying spins. Both chains could effectively `enhance' weak couplings in a cumulative fashion, and neither scheme requires active quantum control. Moreover, the distributed entanglement generated can offer larger separation between the qubits than more conventional protocols that only exploit the tunnelling effects between quantum dots. The quantum memory can also `smooth' the statistical fluctuations in the effects of local errors when the stored information is spread. Next, an interacting chain of static spins with nearest-neighbour interactions is introduced to connect distant end spins. Previously, it has been shown that this approach provides a cubic speed-up when compared with the direct coupling between the target spins. The practicality of this scheme is investigated by analysing realistic error effects via numerical simulations, and from that perspective relaxation of the nearest-neighbour assumption is proposed. Finally, a non-interacting electron spin ensemble is reviewed as a quantum memory to store single photons from an on-chip stripline cavity. It is then promoted to a full quantum processor, with major error effects analysed.
37

Organic materials for quantum computation

Rival, Olivier January 2009 (has links)
Quantum mechanics has a long history of helping computer science. For a long time, it provided help only at the hardware level by giving a better understanding of the properties of matter and thus allowing the design of ever smaller and ever more efficient components. For the last few decades, much research has been dedicated to finding whether one can change computer science even more radically by using the principles of quantum mechanics at both the hardware and algorithm levels. This field of research called Quantum Information Processing (QIP) has rapidly seen interesting theoretical developments: it was in particular shown that using superposition of states leads to computers that could outperform classical ones. The experimental side of QIP however lags far behind as it requires an unprecedented amount of control and understanding of quantum systems. Much effort is spent on finding which particular systems would provide the best physical implementation of QIP concepts. Because of their nearly endless versatility and the high degree of control over their synthesis, organic materials deserve to be assessed as a possible route to quantum computers. This thesis studies the QIP potential of spin degrees of freedom in several such organic compounds. Firstly, a study on low-spin antiferromagnetic rings is presented. It is shown that in this class of molecular nanomagnets the relaxation times are much longer than previously expected and are in particular long enough for up to a few hundred quantum operations to be performed. A detailed study of the relaxation mechanisms is presented and, with it, routes to increasing the phase coherence time further by choosing the suitable temperature, isotopic and chemical substitution or solvent. A study of higher-spin systems is also presented and it is shown that the relaxation mechanisms are essentially the same as in low-spin compounds. The route to multi-qubit system is also investigated: the magnetic properties of several supermolecular assemblies, in particular dimers, are investigated. Coupling between neighbouring nanomagnets is demonstrated and experimental issues are raised concerning the study of the coherent dynamics of dimers. Finally a study of the purely organic compound phenanthrene is reported. In this molecule the magnetic moment does not result from the interactions between several transition metal ions as in molecular nanomagnets but from the photoexcitation of an otherwise diamagnetic molecule. The interest of such a system in terms of QIP is presented and relaxation times and coupling to relevant nuclei are identified.
38

Electromagnetically induced transparency and light storage in optically dense atomic vapour

Langfahl-Klabes, Gunnar January 2015 (has links)
This thesis set out to investigate light storage based on dynamic electromagnetically induced transparency (EIT) in a room-temperature atomic ensemble of rubidium as a means to provide a quantum memory for single-photons created by a single rubidium atom coupled to a high-finesse optical resonator. Setting up the light storage medium presented a new addition to the research group's portfolio of experimental techniques and led to investigations of EIT, slow light and stored light in warm rubidium-87 vapour. Lambda level schemes connecting Zeeman or hyperfine substates on the D<sub>1</sub> and D<sub>2</sub> lines were addressed in rubidium vapour cells containing different buffer gases and different isotopic fractions of rubidium-87 and rubidium-85. Single beam spectroscopy with a weak probe was used to characterise the vapour cells. A numerical method to fit the D line spectrum to a theoretical model to include isotopic fractions and collisional broadening of a buffer gas has been implemented. Temperature and isotopic fractions could be reliably extracted from the fit parameters. For an offset-stabilisation of two lasers to address a lambda level scheme connecting the two different hyperfine groundstates in rubidium a phase locked loop including a frequency divider has been designed and implemented. Light storage and retrieval has been demonstrated using a Zeeman scheme on the D1 line. Two microsecond long classical light pulses containing one million photons on average were stored and retrieved with an efficiency of 15&percnt; after a delay of one microsecond. Several methods of attenuating the strong co-propagating control laser beam to allow for lowering the signal pulse intensity in future experiments are discussed.
39

Charge state manipulation of silicon-based donor spin qubits

Lo Nardo, Roberto January 2015 (has links)
Spin properties of donor impurities in silicon have been investigated by electron spin resonance (ESR) techniques for more than sixty years. These studies gave us a contribution towards understanding some of the physics of doped semiconductor materials in general, which is the platform for much of our current technology. Despite the fact that donor electron and nuclear spins have been researched for so long, ESR studies of their properties are still giving us interesting insights. With the introduction of the concept of quantum information in the 1980s, some properties of donor spins in silicon, that were known from the fifties (such as long relaxations), have been reinterpreted for their potential application in this field. Since then, incredible experimental results have been achieved with magnetic resonance control, including manipulation and read-out of individual spins. However, some open questions are still to be answered before the realisation of a spin-based silicon quantum architecture will be achieved. Currently, ESR studies still contribute to help answering some of those questions. In this thesis, we demonstrate electrical and optical methods for donor charge state manipulation measured by ESR. Recent experiments have demonstrated that coherence time of nuclear spins may be enhanced by manipulating the state of donors from neutral to singly charged. We investigate electric field ionisation/neutralisation of arsenic donors in a silicon SOI device measured by ESR. Below ionisation threshold, we also measure the hyperfine Stark shift of arsenic donors spins in silicon. These results have, for instance, implications on how fast individual addressability of donor spins may be achieved in certain quantum computer architectures. Here, we also study optical-driven charge state manipulation of selenium impurities in silicon. Selenium has two additional electrons when it replaces an atom in the silicon crystal (i.e. double donor). The electronic properties of singly-ionised selenium make it potentially advantageous as spin qubit, compared to the more commonly studied group-V donors. For instance, we find here that the electron spin relaxation and coherence times of selenium are up to two orders of magnitude longer than phosphorus at the same temperature. Finally, we demonstrate that it is possible to bring selenium impurity in singly-charged state and subsequently re-neutralise them leaving a potential long-lived <sup>77</sup>Se nuclear spin.
40

Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots

Hsieh, Chang-Yu 07 March 2012 (has links)
In this thesis, I present a microscopic theory of quantum circuits based on interacting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the following applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demonstrate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions.

Page generated in 0.1239 seconds