Spelling suggestions: "subject:"kuantum istatistical mechanics"" "subject:"kuantum istatistical echanics""
1 |
Quantum Information Dynamics: A Perspective From Free Fermion ModelsRiddell, Jonathon January 2019 (has links)
Equilibration, thermalization and scrambling appear to be intimately related, however their exact relation is unknown. As presented in the introduction these fields are at their current stages still quite popular and new directions are appearing regularly. We first put the fields into focus in the introduction and then the following chapters present three manuscripts as my contributions to these fields during my Master of Science project. Further introductions and background are presented in the manuscripts and my contributions are summarized at the beginning of each chapter. / Thesis / Master of Science (MSc)
|
2 |
Aspectos de teorias quânticas de gauge a temperatura finita / Thermal Effects in Quantum Gauge Theory at Finite TemperatureFrancisco, Rafael Rodrigues 26 August 2014 (has links)
Nós trabalhamos em três problemas relacionados com as teorias de gauge a temperatura finita. O primeiro discute a invariância de gauge da massa física do elétron num espaço de dimensão arbitrária a temperatura zero. Obtivemos a massa física a partir do polo do propagador fermiônico e demonstramos que a maneira usual de definir este propagador funciona para gauges covariantes mas não para gauges não covariantes. Em seguida propusemos um novo propagador e verificamos de duas formas diferentes que a massa física obtida a partir deste funciona para um gauge definido com parâmetros de controle tais que ele possa ser generalizado para as duas classes estudadas. O segundo problema é sobre a interação de n fótons num espaço de (1+1) dimensões no limite de altas temperaturas. Usando o formalismo de tempo imaginário e o modelo de Schwinger, mostramos que todos os termos das amplitudes causais retardadas com um ou mais loops têm contribuição nula. Interpretamos fisicamente este resultado e fizemos um paralelo de como ele se relaciona com a invariância CPT da teoria. A última parte é relacionada à gravitação quântica em (3+1) dimensões. Discutimos a possibilidade de obtermos as funções de n grávitons 1PI nos limites estático e de comprimento de onda longo em função de polinômios que podem ser escritos e relacionados de uma maneira simples. Para tanto, usamos as identidades de Ward e a invariância de Weyl de forma a relacionar as funções de n e (n+1) grávitons. Em seguida, utilizamos o formalismo da equação de transporte de Boltzmann para compreender melhor os resultados. / We have worked in three problems related to finite temperature gauge theory. The first one discusses the gauge invariance of the electron physical mass in an arbitrary dimension space at zero temperature. We have obtained the physical mass from the pole of the fermion propagator and we have demonstrated that the usual form to define this propagator works well for covariant gauges, but not for non covariant gauges. Then, we have proposed anew fermion propagator and we verified in two different ways that the physical mass obtained from this new one works for a gauge defined with control parameters so that it could be generalized for both classes studied. The second problem is on the n photon interaction in a space with (1+1) dimensions at hard thermal loops. Using the imaginary time formalism and the Schwinger\'s model, we have shown that all terms of the retarded causal amplitudes with one or more loops have null contribution. We have got a physical interpretation of this result and we have done a parallel of how it relates with the CPT invariance of this theory. The last one is related with quantum gravitation in (3+1) dimensions. We have discussed the possibility to obtain the 1PI n graviton functions in static and long-wavelength limits from polynomials which could be written and related in a simple manner. To this end, we used the Ward identities and the Weyl invariance to relate the n and (n+1) graviton functions. Then, we used the Boltzmann transport equation formalism to get a better understanding of the results.
|
3 |
Aspectos de teorias quânticas de gauge a temperatura finita / Thermal Effects in Quantum Gauge Theory at Finite TemperatureRafael Rodrigues Francisco 26 August 2014 (has links)
Nós trabalhamos em três problemas relacionados com as teorias de gauge a temperatura finita. O primeiro discute a invariância de gauge da massa física do elétron num espaço de dimensão arbitrária a temperatura zero. Obtivemos a massa física a partir do polo do propagador fermiônico e demonstramos que a maneira usual de definir este propagador funciona para gauges covariantes mas não para gauges não covariantes. Em seguida propusemos um novo propagador e verificamos de duas formas diferentes que a massa física obtida a partir deste funciona para um gauge definido com parâmetros de controle tais que ele possa ser generalizado para as duas classes estudadas. O segundo problema é sobre a interação de n fótons num espaço de (1+1) dimensões no limite de altas temperaturas. Usando o formalismo de tempo imaginário e o modelo de Schwinger, mostramos que todos os termos das amplitudes causais retardadas com um ou mais loops têm contribuição nula. Interpretamos fisicamente este resultado e fizemos um paralelo de como ele se relaciona com a invariância CPT da teoria. A última parte é relacionada à gravitação quântica em (3+1) dimensões. Discutimos a possibilidade de obtermos as funções de n grávitons 1PI nos limites estático e de comprimento de onda longo em função de polinômios que podem ser escritos e relacionados de uma maneira simples. Para tanto, usamos as identidades de Ward e a invariância de Weyl de forma a relacionar as funções de n e (n+1) grávitons. Em seguida, utilizamos o formalismo da equação de transporte de Boltzmann para compreender melhor os resultados. / We have worked in three problems related to finite temperature gauge theory. The first one discusses the gauge invariance of the electron physical mass in an arbitrary dimension space at zero temperature. We have obtained the physical mass from the pole of the fermion propagator and we have demonstrated that the usual form to define this propagator works well for covariant gauges, but not for non covariant gauges. Then, we have proposed anew fermion propagator and we verified in two different ways that the physical mass obtained from this new one works for a gauge defined with control parameters so that it could be generalized for both classes studied. The second problem is on the n photon interaction in a space with (1+1) dimensions at hard thermal loops. Using the imaginary time formalism and the Schwinger\'s model, we have shown that all terms of the retarded causal amplitudes with one or more loops have null contribution. We have got a physical interpretation of this result and we have done a parallel of how it relates with the CPT invariance of this theory. The last one is related with quantum gravitation in (3+1) dimensions. We have discussed the possibility to obtain the 1PI n graviton functions in static and long-wavelength limits from polynomials which could be written and related in a simple manner. To this end, we used the Ward identities and the Weyl invariance to relate the n and (n+1) graviton functions. Then, we used the Boltzmann transport equation formalism to get a better understanding of the results.
|
4 |
Perspectives on the Formalism of Quantum TheoryUdudec, Cozmin January 2012 (has links)
Quantum theory has the distinction among physical theories of currently underpinning
most of modern physics, while remaining essentially mysterious, with no general agreement about the nature of its principles or the underlying reality. Recently, the rise of quantum information science has shown that thinking in operational or information-theoretic terms can be extremely enlightening, and that a fruitful direction for understanding quantum theory is to study it in the context of more general probabilistic theories. The framework
for such theories will be reviewed in the Chapter Two.
In Chapter Three we will study a property of quantum theory called self-duality, which is a correspondence between states and observables. In particular, we will show that self-duality follows from a computational primitive called bit symmetry, which states that every logical bit can be mapped to any other logical bit by a reversible transformation.
In Chapter Four we will study a notion of probabilistic interference based on a hierarchy of interference-type experiments involving multiple slits. We characterize theories which do not exhibit interference in experiments with k slits, and give a simple operational interpretation. We also prove a connection between bit symmetric theories which possess certain natural transformations, and those which exhibit at most two-slit interference.
In Chapter Five we will focus on reconstructing the algebraic structures of quantum theory. We will show that the closest cousins to standard quantum theory, namely the finite-dimensional Jordan-algebraic theories, can be characterized by three simple principles: (1) a generalized spectral decomposition, (2) a high degree of symmetry, and (3) a generalization of the von Neumann-Luders projection postulate. Finally, we also show that the absence of three-slit interference may be used as an alternative to the third principle.
In Chapter Six, we focus on quantum statistical mechanics and the problem of understanding how its characteristic features can be derived from an exact treatment of the underlying quantum system. Our central assumptions are sufficiently complex dynamics encoded as a condition on the complexity of the eigenvectors of the Hamiltonian, and an information theoretic restriction on measurement resources. We show that for almost all Hamiltonian systems measurement outcome probabilities are indistinguishable from the uniform distribution.
|
5 |
Perspectives on the Formalism of Quantum TheoryUdudec, Cozmin January 2012 (has links)
Quantum theory has the distinction among physical theories of currently underpinning
most of modern physics, while remaining essentially mysterious, with no general agreement about the nature of its principles or the underlying reality. Recently, the rise of quantum information science has shown that thinking in operational or information-theoretic terms can be extremely enlightening, and that a fruitful direction for understanding quantum theory is to study it in the context of more general probabilistic theories. The framework
for such theories will be reviewed in the Chapter Two.
In Chapter Three we will study a property of quantum theory called self-duality, which is a correspondence between states and observables. In particular, we will show that self-duality follows from a computational primitive called bit symmetry, which states that every logical bit can be mapped to any other logical bit by a reversible transformation.
In Chapter Four we will study a notion of probabilistic interference based on a hierarchy of interference-type experiments involving multiple slits. We characterize theories which do not exhibit interference in experiments with k slits, and give a simple operational interpretation. We also prove a connection between bit symmetric theories which possess certain natural transformations, and those which exhibit at most two-slit interference.
In Chapter Five we will focus on reconstructing the algebraic structures of quantum theory. We will show that the closest cousins to standard quantum theory, namely the finite-dimensional Jordan-algebraic theories, can be characterized by three simple principles: (1) a generalized spectral decomposition, (2) a high degree of symmetry, and (3) a generalization of the von Neumann-Luders projection postulate. Finally, we also show that the absence of three-slit interference may be used as an alternative to the third principle.
In Chapter Six, we focus on quantum statistical mechanics and the problem of understanding how its characteristic features can be derived from an exact treatment of the underlying quantum system. Our central assumptions are sufficiently complex dynamics encoded as a condition on the complexity of the eigenvectors of the Hamiltonian, and an information theoretic restriction on measurement resources. We show that for almost all Hamiltonian systems measurement outcome probabilities are indistinguishable from the uniform distribution.
|
6 |
Efeitos da aperiodicidade sobre as transições quânticas em cadeias XY / Effects of aperiodicity on the quantum transitions in XY chainsOliveira Filho, Fleury Jose de 08 April 2011 (has links)
Neste trabalho realizo uma adaptação do método de Ma, Dasgupta e Hu para o estudo e caracterização das transições de fase quânticas, induzidas por um campo transverso, em cadeias XY de spins 1/2, unidimensionais e aperiódicas, no espírito da adaptação correspondente para cadeias XXZ. O presente trabalho determina de forma analítica uma série de expoentes críticos associados às transições ferro-paramagnéticas do sistema, e dá pistas quanto à natureza das estruturas presentes no estado fundamental. Os resultados são então testados pelo emprego da técnica de férmions livres, da análise de nite size scaling e, no limite de Ising, de resultados extraídos do mapeamento do problema em uma caminhada aleatória. / We employ an adaptation of the Ma, Dasgupta, Hu method in order to analyze the quantum phase transition, induced by a transversal magnetic eld, at spin-1/2 aperiodic XY chains, in analogy to the corresponding adaptation for XXZ chains. We derive analytical expressions for some cri tical exponents related with the ferro-paramagnetic transitions, and shed light onto the nature of the ground state structures. The main results obtained by this approach were tested by the free-fermion method, nite-size scaling analyses and, at the Ising limit of the model, by using results derived from a mapping to a random-walk problem.
|
7 |
Dissipação e ruído de dipolos magnéticos coletivamente acoplados a um circuito ressonante / Damping and noise of magnetic dipoles collectively coupled with a resonant circuitFaria, Alencar José de 17 March 2008 (has links)
Estudamos o amortecimento radiativo e o ruído de spins de um material magnético acoplado a um circuito ressonante. O amortecimento radiativo em ressonância magnética é um fenômeno de dissipação, na qual a magnetização preparada após um pulso de Rabi sofre um decaimento até seu estado de equilíbrio. O material magnético perde energia através do seu acoplamento com o circuito ressonante, que deve estar sintonizado na freqüência de Larmor dos spins do material. Apesar deste fenômeno ter sido estudado há vários anos, nenhuma descrição quântica completa lhe foi dada. Apresentamos um modelo hamiltoniano quântico que descreve o amortecimento radiativo. Para isto usamos o método de equações de Langevin quânticas. Mostramos que além do amortecimento radiativo do material magnético, se o circuito está em um estado inicial coerente, a magnetização adquire um movimento complicado não-trivial. Usando as mesmas equações de Langevin, estudamos a influência da amostra no ruído do circuito ressonante. Calculamos a densidade espectral da corrente no caso em que todo o sistema está em equilíbrio térmico. Pudemos verifcar a efcácia do método comparando-o com estudos anteriores. Além disso, estudamos as alterações do ruído do circuito quando uma tensão oscilante externa é aplicada. Nesta situação surgem dois outros picos laterais ao pico central do espectro de absorção da amostra magnética. Isso leva a três depressões no espectro da corrente do circuito. Este efeito deve-se à separação dupla dos estados de energia dos spins. Comentamos sobre a analogia deste fenômeno com a fluorescência ressonante observada na Óptica Quântica. / We study the radiation damping and the spin noise of a magnetic material coupled with a resonant circuit. Radiation damping in magnetic resonance is a dissipation phenomenon, where magnetization prepared after a Rabi pulse decays toward its equilibrium state. The magnetic sample loses its energy by the coupling with resonant circuit, that must be tuned in Larmor frequency of the sample spins. Even though this phenomenon had been studied many years ago, no full quantum description was done. We present a quantum Hamiltonian model, that explains the radiation damping. We use quantum Langevin equation method for this task. Beyond radiation damping, we show the magnetization acquires an unusual intrincate motion, if the circuit initial state is coherent. Using the same Langevin equation, we study the sample influence on the resonant circuit noise. We calculate the current spectral density in the case of thermal equilibrium of whole system. We can verify the method efectiveness, comparing former papers. Moreover we study modifcations in the circuit noise, if an external oscillating tension is applied. In this situation, other two peaks emerge in the central peak sidebands of the sample absorption spectrum. It leads to appear three dips in circuit current spectrum. This efect is due to the splitting of the spin energy states. We comment about the analogy between this phenomenon and the resonance fluorescence in Quantum Optics.
|
8 |
Matrizes aleatórias no ensemble / Random matrices in the B EnsembleSantos, Gabriel Marinello de Souza 14 August 2014 (has links)
O estudo de matrizes aleatórias na física tradicionalmente ocorre no contexto dos modelos de Wigner e na estatística por modelos de Wishart, que se conectam através do threefold way de Dyson para matrizes aleatórias reais, complexas e de quaternios indexadas respectivamente pelo índice B = 1; 2; 4 de Dyson. Estudos recentes mostraram o caminho para que estes modelos fossem generalizados para valores reais de B, permitindo o estudo de ensembles com índice arbitrário. Neste trabalho, estudamos as propriedades estatísticas destes sistemas e exploramos a física subjacente nos modelos de Wigner e Wishart e investigamos, através de cálculos numéricos, os efeitos de localização nos modelos de geral. Também introduzimos quebras na simetria desta nova forma e estudamos numericamente os resultados da estatística dos sistemas perturbados. / The study of random matrices in physics has traditionally occurred in the context of Wigner models and in statistics by Wishart models, which are connected through Dyson\'s threefold way for real, complex and quaternion random matrices index by the Dyson _ = 1; 2; 4 index, respectively. Recent studies have shown the way by which these models are generalized for real values of _, allowing for the study the ensembles with arbitrary index. In this work, we study the statistical properties of these systems and explore the underlying physics in Wigner\'s and Wishart\'s models through and investigate through numerical calculations the e_ects of localization in general _ models. We also introduce symmetry breaks in this new form and study numerically the results of the statistics of the disturbed systems.
|
9 |
Sólitons a temperatura finita: correções quânticas e térmicas à massa / Solitons at finite temperature: quantum and thermal corrections to the mass.França, Luana Perez 03 September 2014 (has links)
Sólitons são soluções clássicas de equações de campos não lineares, que possuem energia finita e densidade de energia localizada. Eles constituem pacotes de energia que se movem de maneira uniforme e não dispersiva, assemelhando-se a partículas estendidas. Quando se estuda um sistema à temperatura finita é possível tecer um paralelo entre a teoria quântica de campos e a mecânica estatística. Neste trabalho calculamos, na aproximação de um laço, a correção quântica à massa do kink do modelo 4 acoplado a um campo fermiônico. As contribuições bosônica e fermiônica são calculadas à temperatura zero e o comportamento das flutuações a temperatura finita também é analisado. / Solitons are classical solutions of non-linear field equations, that have finite energy and localised energy density. They constitute non-dispersive localised packages of energy moving uniformly, resembling extended particles. When studying a system at finite temperature one can make an analogy between quantum field theory and statistical mechanics. In this work we calculate, in one loop approximation, the quantum correction to the mass of the kink of the model 4 coupled to a fermionic field. The bosonic and fermionic contributions are calculated at zero temperature and the behavior of the finite temperature fluctuations are also analysed.
|
10 |
Dissipação e ruído de dipolos magnéticos coletivamente acoplados a um circuito ressonante / Damping and noise of magnetic dipoles collectively coupled with a resonant circuitAlencar José de Faria 17 March 2008 (has links)
Estudamos o amortecimento radiativo e o ruído de spins de um material magnético acoplado a um circuito ressonante. O amortecimento radiativo em ressonância magnética é um fenômeno de dissipação, na qual a magnetização preparada após um pulso de Rabi sofre um decaimento até seu estado de equilíbrio. O material magnético perde energia através do seu acoplamento com o circuito ressonante, que deve estar sintonizado na freqüência de Larmor dos spins do material. Apesar deste fenômeno ter sido estudado há vários anos, nenhuma descrição quântica completa lhe foi dada. Apresentamos um modelo hamiltoniano quântico que descreve o amortecimento radiativo. Para isto usamos o método de equações de Langevin quânticas. Mostramos que além do amortecimento radiativo do material magnético, se o circuito está em um estado inicial coerente, a magnetização adquire um movimento complicado não-trivial. Usando as mesmas equações de Langevin, estudamos a influência da amostra no ruído do circuito ressonante. Calculamos a densidade espectral da corrente no caso em que todo o sistema está em equilíbrio térmico. Pudemos verifcar a efcácia do método comparando-o com estudos anteriores. Além disso, estudamos as alterações do ruído do circuito quando uma tensão oscilante externa é aplicada. Nesta situação surgem dois outros picos laterais ao pico central do espectro de absorção da amostra magnética. Isso leva a três depressões no espectro da corrente do circuito. Este efeito deve-se à separação dupla dos estados de energia dos spins. Comentamos sobre a analogia deste fenômeno com a fluorescência ressonante observada na Óptica Quântica. / We study the radiation damping and the spin noise of a magnetic material coupled with a resonant circuit. Radiation damping in magnetic resonance is a dissipation phenomenon, where magnetization prepared after a Rabi pulse decays toward its equilibrium state. The magnetic sample loses its energy by the coupling with resonant circuit, that must be tuned in Larmor frequency of the sample spins. Even though this phenomenon had been studied many years ago, no full quantum description was done. We present a quantum Hamiltonian model, that explains the radiation damping. We use quantum Langevin equation method for this task. Beyond radiation damping, we show the magnetization acquires an unusual intrincate motion, if the circuit initial state is coherent. Using the same Langevin equation, we study the sample influence on the resonant circuit noise. We calculate the current spectral density in the case of thermal equilibrium of whole system. We can verify the method efectiveness, comparing former papers. Moreover we study modifcations in the circuit noise, if an external oscillating tension is applied. In this situation, other two peaks emerge in the central peak sidebands of the sample absorption spectrum. It leads to appear three dips in circuit current spectrum. This efect is due to the splitting of the spin energy states. We comment about the analogy between this phenomenon and the resonance fluorescence in Quantum Optics.
|
Page generated in 0.1118 seconds