• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 36
  • 36
  • 35
  • 20
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 3
  • Tagged with
  • 689
  • 689
  • 221
  • 69
  • 60
  • 54
  • 50
  • 44
  • 42
  • 42
  • 41
  • 40
  • 39
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Classical and quantum strategies for bit commitment schemes in the two-prover model

Simard, Jean-Raymond. January 2007 (has links)
No description available.
322

First principles theory for quantum transport : effects of strong correlation

Marcotte, Étienne. January 2008 (has links)
No description available.
323

Governance, Citizenship, and the New Sciences: Lessons From Dewey and Follett on Realizing Democratic Administration

Evans, Karen Gilliland 24 August 1998 (has links)
Administrative reform as we have known it has been constrained by the ontological and epistemological premises and assumptions of Newtonian physics and the positivism of the early behavioral sciences, leaving constructs vital to a democratic polity impoverished and problematized by power inequities and distorted communication. If public administration could be liberated from those ontological limits through adoption of concepts from the new sciences - quantum theory, chaos theory, complexity theory, and today's ecological sciences - it might be possible to restore to the practices of citizenship and governance appropriate institutional structures which will preserve and nurture them. This dissertation develops lessons and activities pertinent to the practices of citizenship and governance drawn from the life work of John Dewey and Mary Parker Follett - lessons clarified by the premises and assumptions of the new sciences and activities congruent with those lessons. This dissertation is comprised of four broad components: a history of administrative reform as told through the literatures of the fields of public administration and public space philosophy; a history of science in two parts - the development of classical science and the development of the new sciences - from which defining ontological and epistemological characteristics of each are abstracted; case studies from American history that demonstrate the influence of classical science on political and social thought and action; and lessons and activities for public administration and its practitioners, framed in the context of the new sciences, drawn from the life work of John Dewey and Mary Parker Follett. The argument this dissertation makes is twofold. First, it is argued that, given the pervasiveness of the influence of modern thought in American society, it is unlikely that early reformers could have conceptualized administrative structure differently than they did. The modern worldview still dominates our thinking, despite the new understandings of how the world works that are available to us now. The second argument is that it is possible, if we choose to do so, to overcome the modern worldview and the structure it imposes on how we think and act, and that this could lead to alternative practices for public administration. The lessons that are our heritage from Dewey and Follett, and from the traditionalists of our own field, if viewed through the lens of the new sciences, resonate with the ontological perspectives of those sciences and provide a starting point for a reconceptualization of democratic administrative practice. / Ph. D.
324

A quantum mechanical semiconductor device simulator

Bhutta, Imran Ahmed 07 June 2006 (has links)
Semiconductor device simulators have generally been based on either classical or semi-classical approaches. In these approaches, the Poisson's equation is solved with either the current continuity equation or the Boltzmann transport equation. Methods based on quantum mechanics have been generally very computer intensive, and thus until recently not much favored. However, with the availability of faster and more powerful computers this picture is changing. As the physical dimensions of the semiconductor devices are reduced, the assumptions made in the classical and the semi-classical approaches become invalid and the simulation results become inaccurate. For such cases, quantum mechanical concepts must be introduced to provide accurate simulation results. This dissertation presents the proof of concept of a semiconductor device simulator based on the quantum mechanical principals. The simulation technique is based on the self consistent solution of the Poisson's and time independent Schrodinger wave equation for a 1-D finite differenced grid. The applicability of the technique to a 2-D finite differenced grid is also presented. The simulation is performed by first solving for the Fermi energy distribution inside the simulation domain. The initial estimates about the carrier concentrations are developed from the Fermi energy distribution. Based on the carrier concentrations, the potential distribution inside the device is updated using the Poisson's equation. The updated potential distribution is then used in the time independent Schrodinger's equation and the carrier wave vectors are thus determined. The carrier wave vectors, along with appropriate density of state function and distribution function are used to update the carrier concentrations. For the 1-D case, the density of state function is based on a single dimension of a three dimensional volume with the assumption that the density of states is the same for all the three dimensions. The distribution function used is the Fermi-Dirac distribution function. The new carrier concentrations thus computed are then substituted back into the Poisson's equation, and self consistency is obtained when minimum error criteria has been met. The device simulator has the capability of simulating heterojunctions semiconductor devices fabricated from elemental semiconductors such as Si and Ge, as well as binary and tertiary compound semiconductors. / Ph. D.
325

Galois quantum systems, irreducible polynomials and Riemann surfaces

Vourdas, Apostolos 08 June 2009 (has links)
No / Finite quantum systems in which the position and momentum take values in the Galois field GF(p), are studied. Ideas from the subject of field extension are transferred in the context of quantum mechanics. The Frobenius automorphisms in Galois fields lead naturally to the "Frobenius formalism" in a quantum context. The Hilbert space splits into "Frobenius subspaces" which are labeled with the irreducible polynomials associated with the yp¿y. The Frobenius maps transform unitarily the states of a Galois quantum system and leave fixed all states in some of its Galois subsystems (where the position and momentum take values in subfields of GF(p)). An analytic representation of these systems in the -sheeted complex plane shows deeper links between Galois theory and Riemann surfaces. ©2006 American Institute of Physics
326

The Classical Limit of Quantum Mechanics

Hefley, Velton Wade 12 1900 (has links)
The Feynman path integral formulation of quantum mechanics is a path integral representation for a propagator or probability amplitude in going between two points in space-time. The wave function is expressed in terms of an integral equation from which the Schrodinger equation can be derived. On taking the limit h — 0, the method of stationary phase can be applied and Newton's second law of motion is obtained. Also, the condition the phase vanishes leads to the Hamilton - Jacobi equation. The secondary objective of this paper is to study ways of relating quantum mechanics and classical mechanics. The Ehrenfest theorem is applied to a particle in an electromagnetic field. Expressions are found which are the hermitian Lorentz force operator, the hermitian torque operator, and the hermitian power operator.
327

Entanglement, dynamical bifurcations and quantum phase transitions /

Hines, Andrew Peter. January 2005 (has links) (PDF)
Thesis (Ph.D) - University of Queensland, 2006. / Includes bibliography.
328

Theory and modelling of energy transport in quantum nanostructures

Fruchtman, Amir January 2016 (has links)
This thesis is concerned with quantum properties of excitonic energy transport in nanostructures that are embedded in a noisy environment. Of principal interests are ways to exploit this environment to facilitate the transport of energetic excitations. The first research chapter deals with an extension to the 'standard' open quantum system picture, where the Hilbert space is split into three: system, environment, and a wider universe. This division is natural for many biological and artificial nanostructures. A new analytical method, based on a phase space representation of the density matrix, is developed for studying such division. The effects of the wider universe are shown to be captured by a simple correction of the environmental response function. The second research chapter addresses the question: when do second-order perturbative approaches to open quantum systems, which are intuitive and simple to compute, provide adequate accuracy? A simple analytical criterion is developed, and its validity is verified for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. In the third research chapter, an intuitive model of a photocell is studied. The model comprises two light-absorbing molecules coupled to an idealised reaction centre, showing asymmetric dimers are capable of providing a significant enhancement of light-to-current conversion under ambient conditions. This is done by 'parking' the energy of an absorbed photon in a dark state which neither absorbs nor emits light. In the final research chapter, a basic model for what can be thought as a "quantum brachistochrone" problem is investigated. Exotic energy configurations are found to yield considerable enhancement to the exciton's transfer probability, due to similar mechanisms studied in the previous chapter.
329

Applications of van der Waals Materials for Superconducting Quantum Devices

Antony, Abhinandan January 2022 (has links)
Quantum computing and two dimensional van der Waals materials research have been two of the fastest growing fields of condensed matter physics research for the better part of the last two decades. In that time, advances in superconducting qubit design, materials and fabrication have improved their relaxation and coherence times by about 5 orders of magnitude. One of the key components that quantum devices such as qubits require are ultra low loss capacitance elements. Conventional parallel plate capacitors have been unable to fulfill this need due to bulk and inter-facial losses, necessitating the use of coplanar capacitors with extremely large footprints. In fact one of the driving forces behind increase coherence times has been the ever growing footprint of these coplanar capacitor pads, and the reduced electric field density and thus reduced surface losses that they provide. However, this style of capacitor creates a number of challenges when it comes to scaling the number of qubits in a system. First, the large geometric footprint of these pads limits the number of qubits that can be placed on a chip. Second, the dispersion of the electric field, above and below the plane of the capacitor pads can cause unwanted crosstalk between neighbouring qubits, again limiting the number of qubits that can be put on a chip without compromising coherence. Since the isolation of a single atomic layer of graphene in 2004 and the ability to create heterostructures of a variety of two dimensional materials, the field of van der Waals materials research has exploded at a similar rate. Single crystals of van der Waals materials, can be grown with extremely low defect densities, and then be stacked to create heterostructures with ultra-clean laminated interfaces. This work explores how van der Waals materials may be used to create low loss parallel plate capacitors. The parallel plate geometry confines the electric field between the crystalline materials and low loss interfaces of a van der Waals heterostructure, limiting both losses at the surfaces as well as undesired cross talk between qubits. We begin by studying the microwave losses in hexagonal boron nitride (hBN). Next we report a method to make low loss microwave contacts to air sensitive superconducting van der Waals materials like niobium diselinde (NbSe₂). Finally, we demostrate coherence in a transmon where the primary shunt capacitor is an all van der Waals parallel plate capacitor, achieving a 1000× reduction in geometric footprint, when compared to a conventional coplanar capacitor.
330

Complex Numbers in Quantum Theory

Maynard, Glenn (Physics researcher) 08 1900 (has links)
In 1927, Nobel prize winning physicist, E. Schrodinger, in correspondence with Ehrenfest, wrote the following about the new theory: “What is unpleasant here, and indeed directly to be objected to, is the use of complex numbers. Psi is surely fundamentally a real function.” This seemingly simple issue remains unexplained almost ninety years later. In this dissertation I elucidate the physical and theoretical origins of the complex requirement. I identify a freedom/constraint situation encountered by vectors when, employed in accordance with adopted quantum representational methodology, and representing angular momentum states in particular. Complex vectors, quite simply, provide more available adjustable variables than do real vectors. The additional variables relax the constraint situation allowing the theory’s representational program to carry through. This complex number issue, which lies at the deepest foundations of the theory, has implications for important issues located higher in the theory. For example, any unification of the classical and quantum accounts of the settled order of nature, will rest squarely on our ability to account for the introduction of the imaginary unit.

Page generated in 0.1911 seconds