• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 20
  • 20
  • 13
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relations in the Witt Group of Nondegenerate Braided Fusion Categories Arising from the Representation Theory of Quantum Groups at Roots of Unity

Schopieray, Andrew 06 September 2017 (has links)
For each finite dimensional Lie algebra $\mathfrak{g}$ and positive integer $k$ there exists a modular tensor category $\mathcal{C}(\mathfrak{g},k)$ consisting of highest weight integrable $\hat{\mathfrak{g}}$-modules of level $k$ where $\hat{\mathfrak{g}}$ is the corresponding affine Lie algebra. Relations between the classes $[\mathcal{C}(\mathfrak{sl}_2,k)]$ in the Witt group of nondegenerate braided fusion categories have been completely described in the work of Davydov, Nikshych, and Ostrik. Here we give a complete classification of relations between the classes $[\mathcal{C}(\mathfrak{sl}_3,k)]$ relying on the classification of conncted \'etale alegbras in $\mathcal(\mathfrak_3,k)$ ($SU(3)$ modular invariants) given by Gannon. We then give an upper bound on the levels for which exceptional connected \'etale algebras may exist in the remaining rank 2 cases ($\mathcal{C}(\mathfrak{so}_5,k)$ and $\mathcal{C}(\mathfrak{g}_2,k)$) in hopes of a future classification of Witt group relations among the classes $[\mathcal{C}(\mathfrak{so}_5,k)]$ and $[\mathcal{C}(\mathfrak{g}_2,k)]$. This dissertation contains previously published material.
2

Quantum Symmetries for Quantum Spaces

Hernandez Palomares, Roberto January 2021 (has links)
No description available.
3

Cadeias quânticas de spin: alguns estudos numéricos e analíticos / Quantum spin chains: some numerical and analytical studies

Nakamura, Gilberto Medeiros 09 March 2006 (has links)
Nesta dissertação, realizamos um estudo sobre cadeias unidimensionais quânticas de spin meio e spin um exatamente integráveis. Estudamos as propriedades do espectro de energia e efeitos produzidos no mesmo devido à finitude da cadeia. Para tal fim, exploramos as propriedades advindas da invariância por transformações conforme dos modelos em seus respectivos pontos críticos. Como apreciação dessa abordagem, estudamos o modelo exatamente integrável NDF, proposto por Alcaraz e Bariev, para partículas de spin 1. Verificamos em tal modelo uma transição de fase quântica. / In this dissertation, we have studied exactly integrable unidimensional quantum spin chains of spin 1/2 and spin 1. Special atention was given to the properties of the energy eigenspectra of these chains and particularly to their finite size effects. To achieve this goal, we have explored the invariance by conformal transformations of the models in their critical points. As an appreciation of these studies, we have studied the exactly integrable model NDF of spin 1, proposed by Alcaraz e Bariev. We verified that such model possess a quantum phase transition.
4

Finite W-algebras of classical type

Brown, Jonathan, 1975- 06 1900 (has links)
ix, 114 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / In this work we prove that the finite W -algebras associated to nilpotent elements in the symplectic or orthogonal Lie algebras whose Jordan blocks are all the same size are quotients of twisted Yangians. We use this to classify the finite dimensional irreducible representations of these finite W -algebras. / Committee in charge: Jonathan Brundan, Co-Chairperson, Mathematics; Victor Ostrik, Co-Chairperson, Mathematics; Arkady Berenstein, Member, Mathematics; Hal Sadofsky, Member, Mathematics; Christopher Wilson, Outside Member, Computer & Information Science
5

Cadeias quânticas de spin: alguns estudos numéricos e analíticos / Quantum spin chains: some numerical and analytical studies

Gilberto Medeiros Nakamura 09 March 2006 (has links)
Nesta dissertação, realizamos um estudo sobre cadeias unidimensionais quânticas de spin meio e spin um exatamente integráveis. Estudamos as propriedades do espectro de energia e efeitos produzidos no mesmo devido à finitude da cadeia. Para tal fim, exploramos as propriedades advindas da invariância por transformações conforme dos modelos em seus respectivos pontos críticos. Como apreciação dessa abordagem, estudamos o modelo exatamente integrável NDF, proposto por Alcaraz e Bariev, para partículas de spin 1. Verificamos em tal modelo uma transição de fase quântica. / In this dissertation, we have studied exactly integrable unidimensional quantum spin chains of spin 1/2 and spin 1. Special atention was given to the properties of the energy eigenspectra of these chains and particularly to their finite size effects. To achieve this goal, we have explored the invariance by conformal transformations of the models in their critical points. As an appreciation of these studies, we have studied the exactly integrable model NDF of spin 1, proposed by Alcaraz e Bariev. We verified that such model possess a quantum phase transition.
6

Integrable deformations of principal chiral models and the AdS/CFT correspondence / 主カイラル模型の可積分変形とAdS/CFT対応

Kawaguchi, Io 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18066号 / 理博第3944号 / 新制||理||1568(附属図書館) / 30924 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 教授 國廣 悌二, 教授 畑 浩之 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
7

Tensor Category Constructions in Topological Phases of Matter

Huston, Peter 07 December 2022 (has links)
No description available.
8

Intégrale de Kontsevich elliptique et enchevêtrements en genre supérieur

Humbert, Philippe 11 December 2012 (has links) (PDF)
Dans cette thèse, on définit un invariant fonctoriel d'enchevêtrements dans le tore épaissi qui généralise l'intégrale de Kontsevich. Cet invariant est tout d'abord construit analytiquement à partir d'une version universelle de la connexion de Knizhnik-Zamolodchikov-Bernard elliptique. On donne ensuite une version combinatoire de sa construction, basée sur la notion d' " associateur elliptique " introduite par Enriquez. L'outil principal de cette dernière construction est un théorème qui caractérise la catégorie des enchevêtrements en genre quelconque par une propriété universelle exprimée dans le langage des catégories tensorielles.
9

Quantum multiplicative hypertoric varieties and localization

Cooney, Nicholas January 2014 (has links)
In this thesis, we consider q-deformations of multiplicative Hypertoric varieties, where q&isin;&Kopf;<sup>x</sup> for &Kopf; an algebraically closed field of characteristic 0. We construct an algebra D<sub>q</sub> of q-difference operators as a Heisenberg double in a braided monoidal category. We then focus on the case where q is specialized to a root of unity. In this setting, we use D<sub>q</sub> to construct an Azumaya algebra on an l-twist of the multiplicative Hypertoric variety, before showing that this algebra splits over the fibers of both the moment and resolution maps. Finally, we sketch a derived localization theorem for these Azumaya algebras.
10

Hochschild and cyclic theory for categorical coalgebras: an algebraic model for the free loop space and its equivariant structure

Daniel C Tolosa (18398493) 18 April 2024 (has links)
<p dir="ltr">We develop a cyclic theory for categorical coalgebras and show that, when applied to the categorical coalgebra of singular chains on a space, this provides an algebraic model for its free loop space as an S<sup>1</sup>-space. In other words, the natural circle action on loop spaces, given by rotation of loops, is encoded in the algebraic structure. In particular, the cyclic homology of the categorical coalgebra of singular chains on a topological space X is isomorphic to the S<sup>1</sup>-equivariant homology of the free loop space. This extends known results relating cyclic theories for the algebra of chains on the based loop space and the equivariant homology of its free loop space. In fact, our statements do not require X to be simply connected, and we work over an arbitrary commutative ring. Along the way, we introduce a family of polytopes, coined as Goodwillie polytopes, that control the combinatorics behind the relationship of the coHochschild complex of a categorical coalgebra and the Hochschild complex of its associated differential graded category.</p>

Page generated in 0.0566 seconds