• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 14
  • 6
  • 1
  • Tagged with
  • 44
  • 44
  • 25
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient simulation of Hamiltonians

Kothari, Robin January 2010 (has links)
The problem considered in this thesis is the following: We are given a Hamiltonian H and time t, and our goal is to approximately implement the unitary operator e^{-iHt} with an efficient quantum algorithm. We present an efficient algorithm for simulating sparse Hamiltonians. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian acts, this algorithm uses (d^2(d+log^* N)||Ht||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log^* N)||Ht||)^{1+o(1)}. In terms of the parameter t, these algorithms are essentially optimal due to a no--fast-forwarding theorem. In the second part of this thesis, we consider non-sparse Hamiltonians and show significant limitations on their simulation. We generalize the no--fast-forwarding theorem to dense Hamiltonians, and rule out generic simulations taking time o(||Ht||), even though ||H|| is not a unique measure of the size of a dense Hamiltonian H. We also present a stronger limitation ruling out the possibility of generic simulations taking time poly(||Ht||,log N), showing that known simulations based on discrete-time quantum walks cannot be dramatically improved in general. We also show some positive results about simulating structured Hamiltonians efficiently.
2

Efficient simulation of Hamiltonians

Kothari, Robin January 2010 (has links)
The problem considered in this thesis is the following: We are given a Hamiltonian H and time t, and our goal is to approximately implement the unitary operator e^{-iHt} with an efficient quantum algorithm. We present an efficient algorithm for simulating sparse Hamiltonians. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian acts, this algorithm uses (d^2(d+log^* N)||Ht||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log^* N)||Ht||)^{1+o(1)}. In terms of the parameter t, these algorithms are essentially optimal due to a no--fast-forwarding theorem. In the second part of this thesis, we consider non-sparse Hamiltonians and show significant limitations on their simulation. We generalize the no--fast-forwarding theorem to dense Hamiltonians, and rule out generic simulations taking time o(||Ht||), even though ||H|| is not a unique measure of the size of a dense Hamiltonian H. We also present a stronger limitation ruling out the possibility of generic simulations taking time poly(||Ht||,log N), showing that known simulations based on discrete-time quantum walks cannot be dramatically improved in general. We also show some positive results about simulating structured Hamiltonians efficiently.
3

QUANTUM SEARCH ON RANDOM GRAPHS

Ahn, Alexander Song January 2021 (has links)
This project was motivated by the following question: what information do the properties of a random graph contain about the performance of a quantum search acting on it? To investigate this problem, we define a notion of search time to quantify the behavior of a quantum search, and find strong evidence of a relation between its distribution and the model of random graph on which the search was performed. Surprisingly, we also find strong evidence that the return time of a classical random walk initialized at the marked vertex is closely related to its search time, and that the distribution of degrees over the graph vertices may play a significant role in this relation. / Mathematics
4

Quantum algorithms for searching, resampling, and hidden shift problems

Ozols, Maris January 2012 (has links)
This thesis is on quantum algorithms. It has three main themes: (1) quantum walk based search algorithms, (2) quantum rejection sampling, and (3) the Boolean function hidden shift problem. The first two parts deal with generic techniques for constructing quantum algorithms, and the last part is on quantum algorithms for a specific algebraic problem. In the first part of this thesis we show how certain types of random walk search algorithms can be transformed into quantum algorithms that search quadratically faster. More formally, given a random walk on a graph with an unknown set of marked vertices, we construct a quantum walk that finds a marked vertex in a number of steps that is quadratically smaller than the hitting time of the random walk. The main idea of our approach is to interpolate the random walk from one that does not stop when a marked vertex is found to one that stops. The quantum equivalent of this procedure drives the initial superposition over all vertices to a superposition over marked vertices. We present an adiabatic as well as a circuit version of our algorithm, and apply it to the spatial search problem on the 2D grid. In the second part we study a quantum version of the problem of resampling one probability distribution to another. More formally, given query access to a black box that produces a coherent superposition of unknown quantum states with given amplitudes, the problem is to prepare a coherent superposition of the same states with different specified amplitudes. Our main result is a tight characterization of the number of queries needed for this transformation. By utilizing the symmetries of the problem, we prove a lower bound using a hybrid argument and semidefinite programming. For the matching upper bound we construct a quantum algorithm that generalizes the rejection sampling method first formalized by von~Neumann in~1951. We describe quantum algorithms for the linear equations problem and quantum Metropolis sampling as applications of quantum rejection sampling. In the third part we consider a hidden shift problem for Boolean functions: given oracle access to f(x+s), where f(x) is a known Boolean function, determine the hidden shift s. We construct quantum algorithms for this problem using the "pretty good measurement" and quantum rejection sampling. Both algorithms use the Fourier transform and their complexity can be expressed in terms of the Fourier spectrum of f (in particular, in the second case it relates to "water-filling" of the spectrum). We also construct algorithms for variations of this problem where the task is to verify a given shift or extract only a single bit of information about it.
5

Quantum algorithms for searching, resampling, and hidden shift problems

Ozols, Maris 06 November 2014 (has links)
This thesis is on quantum algorithms. It has three main themes: (1) quantum walk based search algorithms, (2) quantum rejection sampling, and (3) the Boolean function hidden shift problem. The first two parts deal with generic techniques for constructing quantum algorithms, and the last part is on quantum algorithms for a specific algebraic problem. In the first part of this thesis we show how certain types of random walk search algorithms can be transformed into quantum algorithms that search quadratically faster. More formally, given a random walk on a graph with an unknown set of marked vertices, we construct a quantum walk that finds a marked vertex in a number of steps that is quadratically smaller than the hitting time of the random walk. The main idea of our approach is to interpolate the random walk from one that does not stop when a marked vertex is found to one that stops. The quantum equivalent of this procedure drives the initial superposition over all vertices to a superposition over marked vertices. We present an adiabatic as well as a circuit version of our algorithm, and apply it to the spatial search problem on the 2D grid. In the second part we study a quantum version of the problem of resampling one probability distribution to another. More formally, given query access to a black box that produces a coherent superposition of unknown quantum states with given amplitudes, the problem is to prepare a coherent superposition of the same states with different specified amplitudes. Our main result is a tight characterization of the number of queries needed for this transformation. By utilizing the symmetries of the problem, we prove a lower bound using a hybrid argument and semidefinite programming. For the matching upper bound we construct a quantum algorithm that generalizes the rejection sampling method first formalized by von~Neumann in~1951. We describe quantum algorithms for the linear equations problem and quantum Metropolis sampling as applications of quantum rejection sampling. In the third part we consider a hidden shift problem for Boolean functions: given oracle access to f(x+s), where f(x) is a known Boolean function, determine the hidden shift s. We construct quantum algorithms for this problem using the "pretty good measurement" and quantum rejection sampling. Both algorithms use the Fourier transform and their complexity can be expressed in terms of the Fourier spectrum of f (in particular, in the second case it relates to "water-filling" of the spectrum). We also construct algorithms for variations of this problem where the task is to verify a given shift or extract only a single bit of information about it.
6

An extension of the Deutsch-Jozsa algorithm to arbitrary qudits

Marttala, Peter 01 August 2007
Recent advances in quantum computational science promise substantial improvements in the speed with which certain classes of problems can be computed. Various algorithms that utilize the distinctively non-classical characteristics of quantum mechanics have been formulated to take advantage of this promising new approach to computation. One such algorithm was formulated by David Deutsch and Richard Jozsa. By measuring the output of a quantum network that implements this algorithm, it is possible to determine with N 1 measurements certain global properties of a function f(x), where N is the number of network inputs. Classically, it may not be possible to determine these same properties without evaluating f(x) a number of times that rises exponentially as N increases. Hitherto, the potential power of this algorithm has been explored in the context of qubits, the quantum computational analogue of classical bits. However, just as one can conceive of classical computation in the context of non-binary logic, such as ternary or quaternary logic, so also can one conceive of corresponding higher-order quantum computational equivalents.<p>This thesis investigates the behaviour of the Deutsch-Jozsa algorithm in the context of these higher-order quantum computational forms of logic and explores potential applications for this algorithm. An important conclusion reached is that, not only can the Deutsch-Jozsa algorithms known computational advantages be formulated in more general terms, but also a new algorithmic property is revealed with potential practical applications.
7

An extension of the Deutsch-Jozsa algorithm to arbitrary qudits

Marttala, Peter 01 August 2007 (has links)
Recent advances in quantum computational science promise substantial improvements in the speed with which certain classes of problems can be computed. Various algorithms that utilize the distinctively non-classical characteristics of quantum mechanics have been formulated to take advantage of this promising new approach to computation. One such algorithm was formulated by David Deutsch and Richard Jozsa. By measuring the output of a quantum network that implements this algorithm, it is possible to determine with N 1 measurements certain global properties of a function f(x), where N is the number of network inputs. Classically, it may not be possible to determine these same properties without evaluating f(x) a number of times that rises exponentially as N increases. Hitherto, the potential power of this algorithm has been explored in the context of qubits, the quantum computational analogue of classical bits. However, just as one can conceive of classical computation in the context of non-binary logic, such as ternary or quaternary logic, so also can one conceive of corresponding higher-order quantum computational equivalents.<p>This thesis investigates the behaviour of the Deutsch-Jozsa algorithm in the context of these higher-order quantum computational forms of logic and explores potential applications for this algorithm. An important conclusion reached is that, not only can the Deutsch-Jozsa algorithms known computational advantages be formulated in more general terms, but also a new algorithmic property is revealed with potential practical applications.
8

Categorical quantum dynamics

Gogioso, Stefano January 2016 (has links)
Since their original introduction, strongly complementary observables have been a fundamental ingredient of the ZX calculus, one of the most successful fragments of Categorical Quantum Mechanics (CQM). In this thesis, we show that strong complementarity plays a vastly greater role in quantum theory. Firstly, we use strong complementarity to introduce dynamics and symmetries within the framework of CQM, which we also extend to infinite-dimensional separable Hilbert spaces: these were long-missing features, which open the way to a wealth of new applications. The coherent treatment presented in this work also provides a variety of novel insights into the dynamics and symmetries of quantum systems: examples include the extremely simple characterisation of symmetry-observable duality, the connection of strong complementarity with the Weyl Canonical Commutation Relations, the generalisations of Feynman's clock construction, the existence of time observables and the emergence of quantum clocks. Secondly, we show that strong complementarity is a key resource for quantum algorithms and protocols. We provide the first fully diagrammatic, theory-independent proof of correctness for the quantum algorithm solving the Hidden Subgroup Problem, and show that strong complementarity is the feature providing the quantum advantage. In quantum foundations, we use strong complementarity to derive the exact conditions relating non-locality to the structure of phase groups, within the context of Mermin-type non-locality arguments. Our non-locality results find further application to quantum cryptography, where we use them to define a quantum-classical secret sharing scheme with provable device-independent security guarantees. All in all, we argue that strong complementarity is a truly powerful and versatile building block for quantum theory and its applications, and one that should draw a lot more attention in the future.
9

The abstract structure of quantum algorithms

Zeng, William J. January 2015 (has links)
Quantum information brings together theories of physics and computer science. This synthesis challenges the basic intuitions of both fields. In this thesis, we show that adopting a unified and general language for process theories advances foundations and practical applications of quantum information. Our first set of results analyze quantum algorithms with a process theoretic structure. We contribute new constructions of the Fourier transform and Pontryagin duality in dagger symmetric monoidal categories. We then use this setting to study generalized unitary oracles and give a new quantum blackbox algorithm for the identification of group homomorphisms, solving the GROUPHOMID problem. In the remaining section, we construct a novel model of quantum blackbox algorithms in non-deterministic classical computation. Our second set of results concerns quantum foundations. We complete work begun by Coecke et al., definitively connecting the Mermin non-locality of a process theory with a simple algebraic condition on that theory's phase groups. This result allows us to offer new experimental tests for Mermin non-locality and new protocols for quantum secret sharing. In our final chapter, we exploit the shared process theoretic structure of quantum information and distributional compositional linguistics. We propose a quantum algorithm adapted from Weibe et al. to classify sentences by meaning. The clarity of the process theoretic setting allows us to recover a speedup that is lost in the naive application of the algorithm. The main mathematical tools used in this thesis are group theory (esp. Fourier theory on finite groups), monoidal category theory, and categorical algebra.
10

Simulation of quantum walks in two-Dimensional lattices / Simulação de caminhos quânticos em redes bidimensionais

Amanda Castro Oliveira 15 June 2007 (has links)
Caminhos aleatórios clássicos são essenciais para a Física, a Matemática, a Ciência da Computação e muitas outras áreas. Há uma grande expectativa que a sua versão quântica seja ainda mais poderosa, uma vez que o caminhante quântico se espalha quadraticamente mais rápido que o seu análogo clássico. Neste trabalho, estudamos o comportamento do caminhante quântico em uma e duas dimensões, além de generalizarmos o formalismo de ligações interrompidas para duas ou mais dimensões. Em uma dimensão, analisamos o comportamento do caminhante quântico, que além das duas possibilidades de deslocamento usuais, direita e esquerda, também permanece na posição atual. Em duas dimensões, apresentamos um estudo detalhado do comportamento do caminhante no plano e quando há descoerência gerada pela quebra aleatória das ligações para as posições vizinhas com uma certa probabilidade para cada uma das direções. Quando essa probabilidade de quebra é diferente nas duas direções encontramos um resultado não trivial que representa uma transição do caso 2-D descorente para o caso 1-D coerente. Também utilizamos o formalismo de ligações interrompidas para modelar o comportamento de um caminhante quântico que passa por uma e por duas fendas. Realizamos simulações com com as principais moedas e observamos conclusivamente os padrões de interferência e difração.

Page generated in 0.0845 seconds