• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The infrared spectrum of molecular hydrogen

Guest, Michael Arthur January 1989 (has links)
No description available.
2

Theoretical and computational studies of dissociative recombination of H₃⁺ with low kinetic energy electrons time-independent and time-dependent approach /

Santos, Samantha Fonseca dos. January 2009 (has links)
Thesis (Ph.D.)--University of Central Florida, 2009. / Adviser: Viatcheslav Kokoouline. Includes bibliographical references (p. 138-149).
3

Molecular Rydberg dynamics

Batchelor, Colin January 2003 (has links)
A simple theory relating the dynamics of electrons to the long-range properties of the molecular ionic core is developed for asymmetric top molecules in general and water in particular. It is combined with the molecular version of multichannel quantum defect theory developed by Fano and Jungen and applied to the resonance-enhanced multiphoton ionization spectra of Child and Glab (M. S. Child and W. G. Glab, J. Chem. Phys., 2001, 112, 3754-3765), the mass-analysed threshold ionization spectra of Dickinson et al. (H. Dickinson, S. R. Mackenzie and T. P. Softley, Phys. Chem. Chem. Phys., 2000, 2, 4669-4675) and the as-yet unpublished work of Glab on the photoelectron branching ratios of the nd and nf Rydberg lines of the water molecule. The effect of resonances between electronic and rotational motion in Rydberg molecules is investigated using multichannel quantum defect theory with special reference to the time-resolved wave packet experiments of Smith et al. (R. A. L. Smith, J. R. R. Verlet, E. D. Boleat, V. G. Stavros and H. H. Fielding, Faraday Discuss., 2000, 115, 63-70).
4

Theoretical Investigations in Photoionization: Ultra-fast Pulses in Noble Gases, Core Excitations in Ytterbium and Relativistic Systems

Miguel A Alarcon (18955264) 03 July 2024 (has links)
<p>This dissertation discusses theoretical methods for describing photoionization in different systems in the context of time-dependent and time-independent non-relativistic and time-independent relativistic systems. We introduce a multichannel quantum defect theory (MQDT) model for describing photoionization in the context of pump-probe experiments. The basics of MQDT are introduced and specialized to the argon atom. Two energy regimes are studied in detail and compared to the experiment: (i) a perturbative calculation describing the dynamics of an autoionizing wave packet, (ii) a time-resolved calculation describing the two-photon ionization of a deeply bound wave packet. In both cases, the model accurately describes the relative ionization with respect to the two spin-orbit split thresholds of the ion and the oscillations shown in the delay between the pump and probe. We finalize with a brief presentation, which is primarily pedagogical, of how to use MQDT inside a finite box.</p> <p>Next, we use MQDT to describe the ytterbium atom in different energy regimes and varying degrees of approximation. The motivation behind this lies in the context of quantum information science, but our study is only concerned with calculating atomic properties. We start with a minimal MQDT model to describe the data observed in the experiment, followed by the presentation of an ab initio two-electron model. Both models compare very well to the experiment, and the ab initio method compares favorably with older spectroscopic results. In addition, we show unpublished results that incorporate the hyper-fine effects into the approximate model.</p> <p>Finally, we present an implementation of the two-electron variational R-matrix method for the Dirac equation, including the complete derivation of the solution of the Dirac equation in a central potential. We provide explicit analytic forms for the solutions of the Coulomb potential and use them to derive the generalized quantum defect parameters. A discussion of the variational R-matrix method for the Dirac equation in single and multichannel contexts is presented, with sample calculations for the beryllium and radium atoms. A chapter that summarizes and points to future work for each one of the projects concludes the work.</p>
5

Modelování disociační rekombinace lehkých iontů / Modeling the dissociative recombination of light ions

Hvizdoš, Dávid January 2021 (has links)
The purpose of this work and the project under which it was created is to develop, compare and validate several theoretical approaches and computation methods used to calculate the cross sections of dissociative recombination. For the most part it is con- cerned with the indirect dissociative recombination of molecular ions of H+ 2 in the singlet ungerade channels computed with three distinct approaches. First, the fully numerically solvable two-dimensional approach developed at ÚTF MFF UK as a part of my master's thesis. Second, a vibrational frame transformation method based on the work of Chang and Fano [E. S. Chang and U. Fano, Phys. Rev. A 6, 173 (1972)] and then enhanced into a full energy-dependent form by Gao and Greene [H. Gao and C. H. Greene, J. Chem. Phys. 91, 3988 (1989)], [H. Gao and C. H. Greene, Phys. Rev. A 42, 6946 (1990)], fur- ther improved by our own revisions. Third, a two-dimensional R-matrix method based on matching exact 2D solutions from a small interaction region to asymptotic solutions in the non-interacting region. We thoroughly discuss the various advantages and caveats of these methods and, in the later chapters, present our work on employing them for the realistic recombination of HeH+ + e− . Furthermore, we attempt to extend the presented models to the description of the...

Page generated in 0.0757 seconds