• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 484
  • 116
  • 59
  • 58
  • 29
  • 11
  • 10
  • 10
  • 10
  • 8
  • 6
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 960
  • 960
  • 124
  • 109
  • 101
  • 101
  • 86
  • 79
  • 75
  • 70
  • 69
  • 69
  • 68
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Transport in silicon metal oxide semiconductor quantum dots

Gunther, Allen David 10 March 2000 (has links)
Herein, a program of research is detailed related to transport through the Si metal oxide semiconductor (MOS) quantum dots fabricated in a process flow compatible with modern ULSI (ultra large scale integrated circuit). Silicon quantum dots were fabricated by placing split gates within a MOSFET structure. Quantum dots of several sizes and geometries were fabricated by this process for the purpose of investigating the effects of size and shape on quantized transport through the dots. The transport properties of the different quantum dot sizes and shapes were investigated at low temperatures, and compared to normal MOSFETs fabricated by the same technology. Equilibrium measurements with the device biased in the regime from the onset of weak inversion to just past the onset of strong inversion revealed strongly oscillatory behavior in the tunneling conductance. The conductance peaks appear to map an energy level spectrum in the dot as the inversion and depletion gates are separately swept. Symmetric devices, biased both symmetrically and asymmetrically, show two groups of "branches" which evolve with different slopes in the V[subscript Inv]-V[subscript Depl] plane. An asymmetric device studied shows three groups of branches. In addition, a fine structure is observed in the conductance peak behavior of two devices. This apparent energy level structure is compared to the body of literature on the so-called artificial atoms, as well as self-consistent three dimensional quantum mechanical solutions for the energy levels in the same dot structure, which qualitatively agree with the overall slope of the observed data. However, the calculations reveal only the multiple sets of slopes when asymmetrically biased. These multiple slopes are postulated to arise due to the splitting of the degenerate states of the symmetric structure as the bias makes the structure increasingly asymmetric. Finally, a simplified model is presented which shows how slight asymmetry in the dot confining potential can give rise to both a fine structure and multiple slopes in the branches, and several alternative mechanisms are presented to explain the origin of the fine structure observed. / Graduation date: 2000
62

Study on Ge Quantum Dots Application for Memory and Optoelectronic Devices

Wang, Min-Chuan 11 July 2003 (has links)
Over the past years, semiconductor quantum crystallite or micro-crystals of Si and Ge have received considerable attention for both fundamental and technological reasons. Quantum size effect and visible photoluminescence have been observed in nanometer-sized Si or Ge quantum crystallites. It has two practical applications. one is to prove to be optical semiconductor devices¡Fthe other is to turn into nano-crystal memories. The material Ge is considered a promising material for optical device fabrication. It has been found that Ge quantum dots embedded in Si matrices exhibit photoluminescence (PL) originating from the spatially indirect no-phonon recombination between holes confined within the Ge dots and electrons from the conduction band of the Si. For nano-crystal memories employing discrete charge traps as storage elements have exhibited great potential in device performance, power consumption, and technology scalability, thus recently attracting much research attention as promising candidates to replace the conventional DRAM or Flash memories. In the thesis, we will discuss the material properties of SiNGe and SiCNGe films, such as FTIR, AES, Raman Scattering spectrum analysis. The write/erase and retention characteristics of the nano-crystal are presented through current¡Vvoltage (I¡VV) and capacitance¡Vvoltage (C¡VV) measurements.
63

Nona-arginine peptides facilitate cellular entry of semiconductor nanocrystals: mechanisms of uptake

Xu, Yi, January 2009 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2009. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed December 23, 2009) Includes bibliographical references (p. 39-44).
64

Silicon-germanium self-assembled quantum dot growth and applications in nanodevices

Kim, Dong-won. January 2003 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
65

Development and optimization of quantum dot-neuron interfaces

Winter, Jessica O. 28 August 2008 (has links)
Not available / text
66

Silicon-germanium self-assembled quantum dot growth and applications in nanodevices

Kim, Dong-won 11 July 2011 (has links)
Not available / text
67

Optical Characterization of Quantum-Dots-in-a-Well Infrared Photodetectors Under External Perturbations

Cervantes Chia, Carlos Andres, Lewandowska, Weronika Maria January 2008 (has links)
In this project we have used Fourier transform infrared spectroscopy to study the photoresponse of two different types of quantum dot-in-a-well infrared photodetectors (DWELL QDIPs). The basic task was to compare the photoresponse of these two detectors, and to study the influence of external resonant laser pumping on the photoresponse. Series of measurements were done at 77K. In the first measurements we investigated the photoresponse for different applied voltages at 77K. In a second run of experiments, we used a 1064 nm infrared semiconductor laser to resonantly pump the fundamental transition of the quantum dots. The results show that by using this additional illumination the photoresponse was dramatically increased by creating additional charge carriers in the quantum dots. This could be used to increase the sensitivity of infrared detectors based on QDs.
68

Synthesis and characterization of aqueous quantum dots for biomedical applications /

Li, Hui. Shih, Wei-Heng. Shih, Wan Y. January 2008 (has links)
Thesis (Ph.D.)--Drexel University, 2008. / Includes abstract and vita. Includes bibliographical references (leaves 154-177).
69

Influence of barrier layer on optical and electronic properties of quantum dot molecules

Pancholi, Prasoon. January 2008 (has links)
Thesis (M.M.S.E.)--University of Delaware, 2008. / Principal faculty advisor: Valeria Gabriela Stoleru, Dept. of Materials Science & Engineering. Includes bibliographical references.
70

An external optical micro-cavity strongly coupled to optical centers for efficient single-photon sources. /

Cui, Guoqiang. January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 147-163). Also available online in ProQuest, free to University of Oregon users.

Page generated in 0.0481 seconds