• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Authentication in quantum key growing

Cederlöf, Jörgen January 2005 (has links)
<p>Quantum key growing, often called quantum cryptography or quantum key distribution, is a method using some properties of quantum mechanics to create a secret shared cryptography key even if an eavesdropper has access to unlimited computational power. A vital but often neglected part of the method is unconditionally secure message authentication. This thesis examines the security aspects of authentication in quantum key growing. Important concepts are formalized as Python program source code, a comparison between quantum key growing and a classical system using trusted couriers is included, and the chain rule of entropy is generalized to any Rényi entropy. Finally and most importantly, a security flaw is identified which makes the probability to eavesdrop on the system undetected approach unity as the system is in use for a long time, and a solution to this problem is provided.</p>
2

Authentication in quantum key growing

Cederlöf, Jörgen January 2005 (has links)
Quantum key growing, often called quantum cryptography or quantum key distribution, is a method using some properties of quantum mechanics to create a secret shared cryptography key even if an eavesdropper has access to unlimited computational power. A vital but often neglected part of the method is unconditionally secure message authentication. This thesis examines the security aspects of authentication in quantum key growing. Important concepts are formalized as Python program source code, a comparison between quantum key growing and a classical system using trusted couriers is included, and the chain rule of entropy is generalized to any Rényi entropy. Finally and most importantly, a security flaw is identified which makes the probability to eavesdrop on the system undetected approach unity as the system is in use for a long time, and a solution to this problem is provided. / ICG QC

Page generated in 0.0561 seconds