Spelling suggestions: "subject:"kuantum logicalmathematical models"" "subject:"kuantum practices.mathematical models""
1 |
Non-classical properties of the generalized Jaynes-Cummings models =: 廣義Jaynes-Cummings模型的非經曲性質. / 廣義Jaynes-Cummings模型的非經曲性質 / Non-classical properties of the generalized Jaynes-Cummings models =: Guang yi Jaynes-Cummings mo xing de fei jing qu xing zhi. / Guang yi Jaynes-Cummings mo xing de fei jing qu xing zhiJanuary 1999 (has links)
Kwok Chun Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves [389]-393). / Text in English; abstracts in English and Chinese. / Kwok Chun Ming. / Abstract --- p.i / Acknowledgement --- p.iii / Contents --- p.iv / List of Figures --- p.ix / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Objective and Methodology --- p.3 / Chapter Chapter 2. --- Theory of the Jaynes-Cummings model --- p.5 / Chapter 2.1 --- Formulation of the Jaynes-Cummings model --- p.5 / Chapter 2.1.1 --- Quantization of the Electromagnetic Field --- p.6 / Chapter 2.1.2 --- Quantization of the Matter Field --- p.11 / Chapter 2.1.3 --- The Interaction between the Radiation and the Matter --- p.13 / Chapter 2.1.4 --- Formulation of the One-quantum JCM --- p.15 / Chapter 2.2 --- Energy Eigenstates and Eigenenergy Spectrum --- p.18 / Chapter 2.3 --- Initial States and Observables --- p.20 / Chapter 2.3.1 --- Initial States --- p.20 / Chapter 2.3.2 --- Field Observables --- p.24 / Chapter 2.3.3 --- Atomic Observables --- p.25 / Chapter 2.4 --- Conclusion --- p.27 / Chapter Chapter 3. --- "Generalized SU(1,1) JCM" --- p.28 / Chapter 3.1 --- "Diagonalization of the SU(1,1) JCM" --- p.28 / Chapter 3.2 --- "SU(1,1) Coherent States and Observables" --- p.32 / Chapter 3.2.1 --- "Realizations of the SU(1,1) JCM" --- p.33 / Chapter 3.2.2 --- "SU(1,1) Coherent States" --- p.33 / Chapter 3.2.3 --- Field Observables --- p.35 / Chapter 3.3 --- Conclusion --- p.36 / Chapter Chapter 4. --- "One-mode, Intensity-dependent JCM" --- p.37 / Chapter 4.1 --- "Properties of the One-mode, Intensity-dependent JCM" --- p.37 / Chapter 4.2 --- Squeezing Effect --- p.40 / Chapter 4.2.1 --- Ordinary Amplitude Squeezing --- p.41 / Chapter 4.2.2 --- "SU(1,1) Squeezing" --- p.44 / Chapter 4.2.3 --- SU(2) Squeezing --- p.47 / Chapter 4.3 --- Atomic Inversion --- p.49 / Chapter 4.4 --- Q-function --- p.52 / Chapter 4.4.1 --- Ordinary Q-function --- p.53 / Chapter 4.4.2 --- "SU(1,1) Q-function" --- p.59 / Chapter 4.5 --- Purity Function --- p.65 / Chapter 4.5.1 --- Field Purity Function --- p.65 / Chapter 4.5.2 --- Atomic Purity Function --- p.68 / Chapter 4.6 --- Asymptotic Behavior of Field Squeezing --- p.70 / Chapter 4.7 --- Conclusion --- p.75 / Chapter Chapter 5. --- "One-mode, Two-quantum JCM" --- p.191 / Chapter 5.1 --- "Properties of the One-mode, Two-quantum JCM" --- p.191 / Chapter 5.2 --- Squeezing --- p.196 / Chapter 5.2.1 --- Ordinary Amplitude Squeezing --- p.197 / Chapter 5.2.2 --- "SU(1,1) squeezing" --- p.202 / Chapter 5.2.3 --- SU(2) squeezing --- p.205 / Chapter 5.3 --- Atomic Inversion --- p.206 / Chapter 5.4 --- Q-function --- p.210 / Chapter 5.4.1 --- Ordinary Q-function --- p.210 / Chapter 5.4.2 --- "SU(1,1) Q-function" --- p.215 / Chapter 5.5 --- Purity Function --- p.217 / Chapter 5.5.1 --- Field Purity Function --- p.217 / Chapter 5.5.2 --- Atomic Purity Function --- p.222 / Chapter 5.6 --- Conclusion --- p.225 / Chapter Chapter 6. --- "Two-mode, Two-quantum JCM" --- p.254 / Chapter 6.1 --- "Properties of the Two-mode, Two-quantum JCM" --- p.254 / Chapter 6.2 --- Squeezing --- p.260 / Chapter 6.2.1 --- Ordinary Amplitude Squeezing --- p.260 / Chapter 6.2.2 --- "SU(1,1) Squeezing" --- p.264 / Chapter 6.2.3 --- SU(2) Squeezing --- p.267 / Chapter 6.3 --- Atomic Inversion --- p.269 / Chapter 6.4 --- Q-function --- p.271 / Chapter 6.4.1 --- "SU(1,1) Q-function" --- p.271 / Chapter 6.5 --- Purity Function --- p.273 / Chapter 6.5.1 --- Field Purity Function --- p.273 / Chapter 6.5.2 --- Atomic Purity Function --- p.275 / Chapter 6.6 --- Conclusion --- p.277 / Chapter Chapter 7. --- "Generalized One-mode, Intensity-dependent JCM" --- p.300 / Chapter 7.1 --- "Diagonalization of the Generalizated One-mode, Intensity-dependent JCM" --- p.301 / Chapter 7.2 --- Energy Eigenstates and Eigenenergy Spectrum --- p.307 / Chapter 7.2.1 --- Energy Eigenstates --- p.307 / Chapter 7.2.2 --- Eigenergy Spectrum --- p.309 / Chapter 7.3 --- Conclusion --- p.310 / Chapter Chapter 8. --- Single Trapped and Laser-irradiated JCM --- p.311 / Chapter 8.1 --- Properties of the One-quantum STLI JCM --- p.311 / Chapter 8.2 --- Squeezing Effect --- p.315 / Chapter 8.2.1 --- Ordinary Amplitude Squeezing --- p.315 / Chapter 8.2.2 --- "SU(1,1) Squeezing" --- p.320 / Chapter 8.2.3 --- SU(2) Squeezing --- p.323 / Chapter 8.3 --- Atomic Inversion --- p.326 / Chapter 8.4 --- Q-function --- p.329 / Chapter 8.4.1 --- Ordinary Q-function --- p.329 / Chapter 8.4.2 --- "SU(1,1) Q-function" --- p.332 / Chapter 8.5 --- Purity Function --- p.334 / Chapter 8.5.1 --- Field Purity Function --- p.335 / Chapter 8.5.2 --- Atomic Purity function --- p.338 / Chapter 8.6 --- Non-classical Effects of the Two-quantum STLI JCM --- p.341 / Chapter 8.7 --- Conclusion --- p.342 / Chapter Chapter 9. --- Conclusion --- p.386 / Bibliography --- p.389
|
2 |
Generalized Jayne[sic]-Cummings models without the rotating wave approximation =: 廣義 Jaynes-Cummings 模型及其反旋轉項之效應. / Generalized Jaynes-Cummings models without the rotating wave approximation / 廣義 Jaynes-Cummings 模型及其反旋轉項之效應 / Generalized Jayne[sic]-Cummings models without the rotating wave approximation =: Guang yi Jaynes-Cummings mo xing ji qi fan xuan zhuan xiang zhi xiao ying. / Guang yi Jaynes-Cummings mo xing ji qi fan xuan zhuan xiang zhi xiao yingJanuary 1997 (has links)
Ng Kin Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 186-189). / Ng Kin Man. / Contents --- p.i / List of Figures --- p.ii / Abstract --- p.iv / Acknowledgement --- p.v / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Objective and Methodology --- p.3 / Chapter Chapter 2. --- Theory of the Jaynes-Cummings model --- p.6 / Chapter 2.1 --- Formulation of the Problem --- p.6 / Chapter 2.1.1 --- Quantization of the Electromagnetic Field --- p.7 / Chapter 2.1.2 --- Quantization of the Matter Field --- p.11 / Chapter 2.1.3 --- The Interaction between the Radiation and the Matter --- p.12 / Chapter 2.1.4 --- Formulation of the one-photon JCM --- p.14 / Chapter 2.2 --- Eenergy eigenstates and Eigenvalue Spectrum --- p.16 / Chapter 2.3 --- Dynamics of the one-photon JCM --- p.18 / Chapter 2.3.1 --- The time evolution of the system --- p.19 / Chapter 2.3.2 --- Atomic Observables --- p.20 / Chapter 2.3.3 --- Field Observables --- p.23 / Chapter 2.4 --- Asymptotic solution of the JCM --- p.27 / Chapter 2.5 --- Discussion of the role of the RWA in the JCM --- p.29 / Chapter 2.6 --- Conclusion --- p.30 / Chapter Chapter 3. --- Numerical Results for the one-photon JCM --- p.40 / Chapter 3.1 --- Eigenstates and Eigenvalue Spectrum --- p.40 / Chapter 3.2 --- Dynamics of the System --- p.44 / Chapter 3.2.1 --- Atomic Observables --- p.44 / Chapter 3.2.2 --- Field Observables --- p.45 / Chapter 3.3 --- Conclusion --- p.47 / Chapter Chapter 4. --- Generalization of the JCM --- p.60 / Chapter 4.1 --- Multiphoton JCM --- p.60 / Chapter 4.2 --- Intensity-dependent JCM --- p.62 / Chapter 4.3 --- Two-mode two-photon JCM --- p.64 / Chapter 4.4 --- Conclusion --- p.66 / Chapter Chapter 5. --- Multiphoton Jaynes-Cummings model --- p.67 / Chapter 5.1 --- Energy Eigenstates and Eigenvalue Spectrum --- p.67 / Chapter 5.1.1 --- Energy Eigenstates and Eigenvalue Spectrum of the two- photon JCM --- p.71 / Chapter 5.1.2 --- Eigenstates and Eigenvalue Spectrum for the k-photon JCM with k>2 --- p.73 / Chapter 5.2 --- Dynamics of the two-photon JCM --- p.75 / Chapter 5.2.1 --- Atomic Observables --- p.75 / Chapter 5.2.2 --- Field Observables --- p.77 / Chapter 5.3 --- Conclusion --- p.84 / Chapter Chapter 6. --- Intensity-dependent Jaynes-Cummings model --- p.107 / Chapter 6.1 --- Eigenstates and Eigenvalue Spectrum --- p.107 / Chapter 6.1.1 --- Energy Eigenstates and Eigenvalue Spectrum of the one- photon intensity-dependent JCM --- p.110 / Chapter 6.1.2 --- "Energy Eigenstates and Eigenvalue Spectrum for the k-photon intensity-dependent, JCM with k > 1" --- p.113 / Chapter 6.2 --- Dynamics of the one-photon intensity-dependent JCM --- p.115 / Chapter 6.2.1 --- Atomic Observables --- p.115 / Chapter 6.2.2 --- Field Observables --- p.116 / Chapter 6.3 --- Conclusion --- p.123 / Chapter Chapter 7. --- Two-mode Two-photon Jaynes- Cummings model --- p.148 / Chapter 7.1 --- Eigenstates and Eigenvalue Spectrum --- p.148 / Chapter 7.2 --- Dynamics of the System --- p.156 / Chapter 7.2.1 --- Atomic Observables --- p.156 / Chapter 7.2.2 --- Field Observables --- p.160 / Chapter 7.3 --- Conclusion --- p.161 / Chapter Chapter 8. --- Conclusion --- p.183 / Bibliography --- p.186
|
3 |
Disentanglement dynamics of photons in noisy environment. / 光子在噪聲環境中的解糾纏 / Disentanglement dynamics of photons in noisy environment. / Guang zi zai zao sheng huan jing zhong de jie jiu chanJanuary 2008 (has links)
Poon, Sin Yau = 光子在噪聲環境中的解糾纏 / 潘善柔. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 101-110). / Abstracts in English and Chinese. / Poon, Sin Yau = Guang zi zai zao sheng huan jing zhong de jie jiu chan / Pan Shanrou. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Review on entanglement theory --- p.4 / Chapter 2.1 --- Pure state entanglement --- p.4 / Chapter 2.2 --- Mixed state entanglement --- p.7 / Chapter 2.3 --- Positive partial transposition (PPT) criterion --- p.9 / Chapter 2.4 --- Negativity of pTA --- p.9 / Chapter 2.4.1 --- Basic properties --- p.10 / Chapter 2.4.2 --- Comparison with concurrence --- p.11 / Chapter 2.5 --- Entanglement witness --- p.12 / Chapter 2.6 --- Inseparability criterion based on uncertainty relations --- p.13 / Chapter 2.7 --- Limitations of the PPT criterion --- p.14 / Chapter 2.8 --- Other manifestations of entanglement --- p.16 / Chapter 2.8.1 --- Non-classicality by negative P-representation --- p.16 / Chapter 2.8.2 --- Non-locality by violation of Bell´ةs inequality --- p.17 / Chapter 3 --- Quantum decoherence: General considerations for open systems --- p.22 / Chapter 3.1 --- A master equation approach --- p.22 / Chapter 3.1.1 --- Master equation in Markovian channels --- p.25 / Chapter 3.2 --- Negativity as a monotone in Markovian systems --- p.26 / Chapter 3.3 --- Finite time disentanglement --- p.29 / Chapter 3.4 --- Non-classicality of harmonic oscillating systems in finite temperature baths --- p.32 / Chapter 4 --- Disentanglement dynamics of two-mode Gaussian states --- p.36 / Chapter 4.1 --- Two-mode Gaussian states: General descriptions --- p.36 / Chapter 4.1.1 --- Covariance matrices and symplectic eigenvalues --- p.37 / Chapter 4.1.2 --- Squeezed states as a source of entanglement --- p.39 / Chapter 4.2 --- Eigenvalues and eigenvectors of pTA --- p.41 / Chapter 4.3 --- Physical interpretation of negativity --- p.43 / Chapter 4.4 --- Disentanglement of two-mode squeezed states in damping and amplifying environment --- p.47 / Chapter 4.4.1 --- Block structures of pTA in Fock space --- p.47 / Chapter 4.4.2 --- Analytic solution of p in position space --- p.49 / Chapter 4.4.3 --- Evolution of eigenvalues and eigenvectors of pTA --- p.51 / Chapter 4.4.4 --- Robust structure of entanglement witness --- p.56 / Chapter 4.5 --- Beam splitter as a model for thermal damping of initial Gaussian states --- p.59 / Chapter 4.6 --- Evolution of entanglement of a damped parametric oscillator --- p.63 / Chapter 4.6.1 --- Eigenvalues and Eigenvectors of pTA --- p.64 / Chapter 4.6.2 --- Negativity and sub-negativity --- p.66 / Chapter 4.7 --- Dissipation in baths with both amplitude and phase damping --- p.68 / Chapter 4.8 --- Loss of nonlocality: An optimized Bell's inequality approach --- p.69 / Chapter 5 --- Disentanglement via polarization mode dispersion --- p.73 / Chapter 5.1 --- Review on polarization mode dispersion --- p.73 / Chapter 5.2 --- A model for stochastic polarization mode dispersion --- p.75 / Chapter 5.3 --- General description of two-photon states --- p.78 / Chapter 5.4 --- Disentanglement of two-photon states in separate fibers --- p.81 / Chapter 5.4.1 --- Polarization negativity and frequency negativity --- p.83 / Chapter 5.4.2 --- Polarization disentanglement --- p.84 / Chapter 5.4.3 --- Frequency disentanglement --- p.85 / Chapter 5.5 --- Disentanglement of two-photon states in a common fiber --- p.86 / Chapter 5.5.1 --- Polarization disentanglement of the singlet state --- p.90 / Chapter 5.5.2 --- Frequency entanglement of the singlet state --- p.91 / Chapter 5.6 --- Non-Markovian channels --- p.92 / Chapter 6 --- Conclusion --- p.99 / Bibliography --- p.101 / Chapter A --- CHSH Inequality for bipartite two level systems --- p.111 / Chapter B --- Transformation from general two-mode Gaussian to double Gaussian product --- p.113 / Chapter C --- Time evolution of general real symmetric two-mode Gaussian density operator --- p.116 / Chapter D --- Time evolution of a damped parametric oscillator --- p.119 / Chapter E --- Optimal Bell values for a damped TMSV in pseudo-spin formalism --- p.123 / Chapter F --- Derivation of master equation for two-photon states --- p.125 / Chapter G --- Solution of master equation for two-photon states --- p.127 / Chapter G.1 --- Evolution of two-photon states in separate fibers --- p.127 / Chapter G.2 --- Evolution of two-photon state in a common fiber --- p.129
|
Page generated in 0.121 seconds