• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 135
  • 14
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • Tagged with
  • 461
  • 461
  • 461
  • 144
  • 136
  • 133
  • 121
  • 42
  • 40
  • 40
  • 38
  • 38
  • 37
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

String Field Theory, Non-commutativity and Higher Spins

Bouatta, Nazim 10 September 2008 (has links)
In Chapter 1, we give an introduction to the topic of open string field theory. The concepts presented include gauge invariance, tachyon condensation, as well as the star product. In Chapter 2, we give a brief review of vacuum string field theory (VSFT), an approach to open string field theory around the stable vacuum of the tachyon. We discuss the sliver state explaining its role as projector in the space of half-string basis. We review the construction of D-brane solutions in vacuum string field theory. We show that in the sliver basis the star product correspond to a matrix product. Using the material introduced in the previous chapters, in Chapter 3 we establish a translation dictionary between open and closed strings, starting from open string field theory. Under this correspondence, we show that (off--shell) level--matched closed string states are represented by star algebra projectors in open string field theory. As an outcome of our identification, we show that boundary states, which in closed string theory represent D-branes, correspond to the identity string field in the open string side. We then turn to noncommutative field theories. In Chapter 4, we introduce the framework in which we will work. The tools introduced are solitons, projectors, and partial isometries. The ideas of Chapter 4 are applied to specific examples in Chapter 5, where we present new solutions of noncommutative gauge theories in which coincident vortices expand into circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall. In Chapter 6, we review the Fronsdal models for free high-spin fields that exhibit peculiar properties. We discuss the triplet structure of totally symmetric tensors of the free String Field Theory and their generalization to AdS background. In Chapter 7, in the context of massless higher spin gauge fields in constant curvature spaces discussed in chapter 6, we compute the surface charges which generalize the electric charge for spin one, the color charges in Yang-Mills theories and the energy-momentum and the angular momentum for asymptotically flat gravitational fields. We show that there is a one-to-one map from surface charges onto divergence free Killing tensors. These Killing tensors are computed by relating them to a cohomology group of the first quantized BRST model underlying the Fronsdal action.
32

Scalar fields on star graphs

Andersson, Mattias January 2011 (has links)
A star graph consists of a vertex to which a set of edges are connected. Such an object can be used to, among other things, model the electromagnetic properties of quantum wires. A scalar field theory is constructed on the star graph and its properties are investigated. It turns out that there exist Kirchoff's rules for the conserved charges in the system leading to restrictions of the possible type of boundary conditions at the vertex. Scale invariant boundary conditions are investigated in detail. / En stjärngraf består av en nod på vilken vilken ett antal kanter är anslutna. Ett sådant objekt kan bland annat användas till att modellera de elektromagnetiska egenskaperna hos kvanttrådar. En skalärfältsteori konstrueras på stjärngrafen och dess egenskaper undersöks. Det visar sig att det exisisterar en typ av Kirchoffs lagar för de konserverade laddningarna i systemet. Detta leder till restriktioner på vilka randvillkor som är möjliga vid noden. Skalinvarianta randvillkor undersöks i detalj.
33

Renormalization group applications in area-preserving nontwist maps and relativistic quantum field theory

Wurm, Alexander. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
34

The philosophical significance of unitarily inequivalent representations in quantum field theory

Lupher, Tracy Alexander 29 August 2008 (has links)
This dissertation gives a general account of the properties of unitarily inequivalent representations (UIRs) in both canonical quantum field theory and algebraic quantum field theory. A simple model is constructed and then used to show how to build a broad spectrum of UIRs including a version of Haag’s theorem. Haag and Kastler,P, two of the founding fathers of algebraic quantum field theory, argue that the problems posed by UIRs are solved by adopting a notion of equivalence that is weaker than unitary equivalence, which they refer to as physical equivalence. In the dissertation, it is shown that their notion does not provide a suitable classificatory schema. Some of the most important physical representations fail to satisfy the mathematical conditions of their notion. However, Haag and Kastler's notion has an unexpected connection with classical observables. A theorem is proven in which two representations make the same predictions with respect to all classical observables if and only if they satisfy their notion of physical equivalence. Following Haag and Kastler's lead, it was claimed by most proponents of algebraic quantum field theory that all physical content resides in a specific class of observables. It is shown in the dissertation that such claims are exaggerated and misleading. UIRs are used to elucidate the nature of quantum field theory by showing that UIRs have different expectation values for some classical observables of the system, such as temperature and chemical potential, which are not in Haag and Kastler’s specific class. It is shown how UIRs may be used to construct classical observables. To capture the physical content of quantum field theory it is shown that a much larger algebra than that of Haag and Kastler is necessary. Finally, the arguments that UIRs are incommensurable theories are shown to be flawed. The lesson of UIRs is that the mathematical structures in both canonical quantum field theory and Haag and Kastler’s version of algebraic quantum field theory are not sufficient to capture all of the physical content that UIRs represent. A suitable algebraic structure for quantum field theory is provided in the dissertation. / text
35

Renormalization group applications in area-preserving nontwist maps and relativistic quantum field theory

Wurm, Alexander 09 May 2011 (has links)
Not available / text
36

ON WARD RELATIONS

Rossberg, Klaus, 1934- January 1965 (has links)
No description available.
37

Superpositions of light fields carrying orbital angular momentum.

Dudley, Angela. 02 December 2013 (has links)
The work presented in this thesis is centred on the generation of superimposed optical fields which each carry orbital angular momentum (OAM) and the development of OAM measurement techniques. Optical fields which carry OAM have found applications ranging from optical tweezing to quantum cryptography. Due to the fact that they offer a potentially infinite-dimensional state space, much interest has been generated in the measurement of OAM in optical fields, in order for higher-dimensional quantum information processing to be realised. In this study we generate superpositions of higher-order Bessel beams and show that even though we can create a field which carries no overall OAM, we can still witness an angular rotation in the intensity profile of the beam. We also develop two new OAM measurement techniques: (1) a robust odd-even-OAM interferometer and (2) a method to measure the OAM density of an optical field by means of a single spatial light modulator (SLM). In the first chapter we give an overview of the literature regarding optical OAM, followed by the derivation of the Helmholtz wave equation from Maxwell’s equations. We illustrate that helically-phased beams, having a phase factor of exp(ilθ), possess a well-defined OAM. Definitions for the fundamental Gaussian mode, as well as two OAM-carrying modes: Laguerre-Gaussian (LG) and Bessel-Gaussian (BG) modes are also given. Since a majority of this thesis involves generating superimposed OAM fields as well as the measurement of OAM, chapter 2 contains detailed discussions on the optical components used to generate and measure OAM. In section 2.9 we present one of our contributions to the field of OAM-measurement, which involves a stable Dove-prism embedded Mach-Zehnder interferometer, capable of sorting 41 OAM states into odd and even ports with a contrast ranging from 92% to 61%. We implement the Dove prism embedded Mach-Zehnder interferometer to mimic an amplitude damping channel for OAM states in chapter 3. Our device is useful in modelling a ‘lossy’ environment for OAM states. In chapter 4 we develop a new technique for the generation of superimposed Bessel beams through the use of a single digital hologram and theoretically and experimentally show that even though the superimposed Bessel beams can be constructed to produce no overall OAM, a rotation in the beam’s intensity profile is still present, as the field propagates. This rotation is due to the differing longitudinal wave-vectors present in the field and we make quantitative, experimental measurements of the angular rotation rates, which are in very good agreement with our theoretical predictions. We also show that the far-field of these superimposed Bessel beams, exhibit no rotation in their intensity profile and we offer a theoretical explanation for this occurrence. In chapter 5, we adapt our technique for generating superimposed Bessel beams to create non-diffracting speckle fields, which are known to possess optical vortices, and show that by controlling the standard deviation of the phase distribution within the digital hologram, we are able to control the evolution of the non-diffracting speckle field into a non-diffracting zero-order Bessel beam. Our final chapter contains a novel technique for the measurement of the OAM density of optical fields, by implementing two optical components: an SLM and a lens. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.
38

Gauge theory constraints on the fermion-boson vertex

Kizilersü, Ayşe January 1995 (has links)
In this thesis we investigate the role played by fundamental properties of QED in determining the non-perturbative fermion-boson vertex. These key features are gauge invariance and multiplicative renormalisability. We use the Schwinger-Dyson equations as the non- perturbative tool to study the general structure of the fermion-boson vertex in QED. These equations, being an infinite set, have to be truncated if they are to be solved. Such a truncation is made possible by choosing a suitable non-perturbative ansatz for the fermion-boson vertex. This choice must satisfy these key properties of gauge invariance and multiplicative renormalisability. In this thesis we develop the constraints, in the case of massless unquenched QED, that have to be fulfilled to ensure that both the fermion and photon propagators are multiplicatively renormalisable-at least as far as leading and subleading logarithms are concerned. To this end, the Schwinger-Dyson equations are solved perturbatively for the fermion and photon wave-function renormalisations. We then deduce the conditions imposed by multiplicative renormalisability for these renormalisation functions. As a last step we compare the two results coming from the solution of the Schwinger-Dyson equations and multiplicative renormalisability in order to derive the necessary constraints on the vertex function. These constitute the main results of this part of the thesis. In the weak coupling limit the solution of the Schwinger-Dyson equations must agree with perturbation theory. Consequently, we can find additional constraints on the 3- point vertex by perturbative calculation. Hence, the one loop vertex in QED is then calculated in arbitrary covariant gauges as an analytic function of its momenta. The vertex is decomposed into a longitudinal part, that is fully responsible for ensuring the Ward and Ward-Takahashi identities are satisfied, and a transverse part. The transverse part is decomposed into 8 independent components each being separately free of kinematic singularities in any covariant gauge in a basis that modifies that proposed by Ball and Chiu. Analytic expressions for all 11 components of the O(a) vertex are given explicitly in terms of elementary functions and one Spence function. These results greatly simplify in particular kinematic regimes. These are the new results of the second part of this thesis.
39

Spinors in general relativity

Grigson, Christopher James January 1970 (has links)
176 leaves : appendices / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--Dept. of Mathematical Physics, University of Adelaide, 1971
40

Applications of quantum field theory in curved spacetimes

Calderon, Hector Hugo. January 2007 (has links) (PDF)
Thesis (Ph. D.)--Montana State University--Bozeman, 2007. / Typescript. Chairperson, Graduate Committee: William A. Hiscock. Includes bibliographical references (leaves 55-60).

Page generated in 0.0591 seconds