• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelos de acoplamento de SIS

DIDIER, Maria Ângela Caldas 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:28:21Z (GMT). No. of bitstreams: 2 arquivo3003_1.pdf: 10717686 bytes, checksum: f612042d14b0a209086c28de2f37580c (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Neste trabalho, pretendemos estudar as vantagens e as limitações dos modelos de acoplamento de SIS(suscetíveis - infectados - suscetíveis) determinísticos e estocásticos. Nosso objetivo principal é através de uma modelagem minimalista tentar explicitar algumas dificuldades encontradas com a modelagem de doenças tão complexas como a Esquistossomose e as Infecçãoes Hospitares. A alta variância nos dados obtidos em campo para tais modelos [6] têm sido um obstáculo na descrição dessas doenças. É nossa intenção tentar descrever tal fenômeno como sendo resultado de um simples acoplamento entre duas populações. Em um segundo momento, pretendemos estabelecer relações entre conceitos determinísticos e os sistemas estocásticos a exemplo do que é feito para o modelo SIS [19-b, 5, 10]. Tal relação permitiria uma melhor descrição dos modelos estocásticos bem como discutir estratégias de controle. Para tanto, estudamos a suscetibilidade dos modelos criados aos seus parâmetros de base. Como doenças possíveis de serem estruturalmente conceituadas através de nossos modelos citamos novamente os casos da Esquistossomose e das Infecções Hospitalares. Na primeira, temos a população de humanos e a população de focos da doença. Na segunda, temos a população dos doentes e a população composta por médicos e enfermeiros de um hospital. Com o propósito descrito acima, desenvolvemos alguns modelos de acoplamento de modelos SIS determinísticos e estocásticos para simular e estudar a dinâmica da difusão de infecções numa comunidade. Foi construído um modelo estocástico computacional de acoplamento de dois SIS e um modelo determinístico com propósito de descrever o modelo qualitativamente. Nos modelos determinísticos o valor da reprodutividade basal representado pelo símbolo R0, determina a persistência ou extinção da doença. Foi realizada uma análise da estabilidade do equilíbrio determinístico em função da reprodutividade basal definida para o modelo determinístico. Para o modelo computacional, estudamos a convergência para um equilíbrio do número de indivíduos infectados de cada popula ção e da reprodutividade basal calculada. Analisamos o comportamento da reprodutividade basal em função do tamanho de uma das populações e também, em função do tempo de recupera ção dos indivíduos de uma população considerada. Observando a existência de epidemias onde os indivíduos podem se infectar mais de uma vez(superinfecção) como por exemplo, a esquistossomose, resolvemos acrescentar a condição de reinfecção no modelo computacional e analisar o comportamento da reprodutividade basal. Foram construídos modelos estocásticos de acoplamento de modelos SIS em tempo-discreto e em tempo-contínuo introduzindo um vetor bidimensional de cadeias de Markov (X(t); Y (t)), t 0 onde X(t) representa o número de indivíduos infectados de uma população H e Y (t), o número de indivíduos infectados de umapopulação F. Consideramos constantes os tamanhos das duas populações, as taxas de transmiss ão e as taxas de recuperação. Estudamos numericamente o valor esperado do número de indivíduos infectados da população H em função do tamanho da população F e, também, em função do tempo de recuperação dos indivíduos da população F. Nos modelos estocásticos, em alguns casos, o tempo até a extinção da doença pode ser muito longo. Portanto, investigamos a possibilidade de construção de uma distribuição de probabilidade condicionada à não-extinção da doença: a distribuição de probabilidade quase-estacionária. O tratamento analítico para a sua obtenção é complexo e encontra um sem número de dificuldades. Recorremos então a aproxima ções analíticas e numéricas para a sua determinação.Mostramos que o tempo de extinção para o modelo de acoplamento em tempo contínuo construído com início em uma distribuição quase-estacionária tem crescimento exponencial. Construímos um modelo de acoplamento de SIS em tempo-contínuo sob uma abordagem estrutural dentro de um processo semi-Markoviano permitindo formular explicitamente o tempo de espera para a extinção de uma epidemia e a sua variância a partir do estado de infecção de cada população. Uma análise do valor esperado para o tempo de extinção e de sua variância em função dos parâmetros do modelo foi realizada. Finalmente, construímos um modelo de acoplamento de SIS onde foi dado um tratamento determin ístico e estudamos o equilíbrio da matriz de covariância para as variáveis aleatórias que representam os números de indivíduos infectados de cada população

Page generated in 0.0647 seconds