• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existence and persistence of invariant objects in dynamical systems and mathematical physics

Calleja, Renato Carlos 06 August 2012 (has links)
In this dissertation we present four papers as chapters. In Chapter 2, we extended the techniques used for the Klein-Gordon Chain by Iooss, Kirchgässner, James, and Sire, to chains with non-nearest neighbor interactions. We look for travelling waves by reducing the Klein-Gordon chain with second nearest neighbor interaction to an advance-delay equation. Then we reduce the equation to a finite dimensional center manifold for some parameter regimes. By using the normal form expansion on the center manifold we were able to prove the existence of three different types of travelling solutions for the Klein Gordon Chain: periodic, quasi-periodic and homoclinic to periodic orbits with exponentially small amplitude. In Chapter 3 we include numerical methods for computing quasi-periodic solutions. We developed very efficient algorithms to compute smooth quasiperiodic equilibrium states of models in 1-D statistical mechanics models allowing non-nearest neighbor interactions. If we discretize a hull function using N Fourier coefficients, the algorithms require O(N) storage and a Newton step for the equilibrium equation requires only O(N log(N)) arithmetic operations. This numerical methods give rise to a criterion for the breakdown of quasi-periodic solutions. This criterion is presented in Chapter 4. In Chapter 5, we justify rigorously the criterion in Chapter 4. The justification of the criterion uses both Numerical KAM algorithms and rigorous results. The hypotheses of the theorem concern bounds on the Sobolev norms of a hull function and can be verified rigorously by the computer. The argument works with small modifications in all cases where there is an a posteriori KAM theorem. / text
2

Réductibilité et théorie de Floquet pour des systèmes différenciels non linéaires / Reducibility and Floquet theory for nonlinear differential systems

Ben Slimene, Jihed 25 March 2013 (has links)
On utilise la théorie de Floquet-Lin pour des systèmes différentiels linéaires quasi- périodiques pour établir des résultats d'existence et d'unicité et de dépendance continue des systèmes différentiels non linéaires quasi-périodiques. Et dans un second temps on établit un résultat de réductibilité d'un système différentiel linéaire presque-périodique en un système différentiel linéaire triangulaire supérieur avec conservation du nombre des solutions presque-périodiques indépendantes. Ensuite, un résultat d’existence et d’unicité et de dépendance continue des systèmes différentiels non linéaires presque-périodiques par rapport au terme du contrôle. / We use a Floquet theory for quasi-periodic linear ordinary differential equations due to Zhensheng Lin to obtain results, of existence, unicity, continuous and differentiable dependence, on the quasi-periodic solutions of quasi-periodic nonlinear ordinary differential equations. in a second time we establish the reducibility of linear systems of almost periodic differential equations into upper triangular systems of a. p. differential equations. This is done while the number of independent a. p. solutions is conserved. We prove existence and uniqueness of a. p. solutions of a nonlinear system with an a. p. linear part. Also we prove the continuous dependence of a. p. solutions of a nonlinear system with respect to an a. p. control term.
3

Periodic and Quasi-Periodic Solutions of some Non-Linear Hamiltonian PDE's / Solutions périodiques et quasi-périodiques de certaines EDP hamiltoniennes non-linéaires

Khayamian, Chiara 13 June 2017 (has links)
Les équations aux dérivées partielles (EDP) permettent d’aborder d’un point de vue mathématique des phénomènes observés dans tous les domaines des sciences. Certaines EDP non-linéaires modélisent des problèmes de mécanique statistique, mécanique des fluides, théories de la gravitation ou des mathématiques financières.L’objectif de ce travail de thèse est l’étude de certains problèmes d’ EDP non-linéaires et hamiltoniennes et la recherche des leurs solutions périodiques et quasi-périodiques. / The aim of this thesis is the research of periodic and quasi-periodic solutions for some non-linear hamiltonian PDEs.

Page generated in 0.0758 seconds