• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chaos, quasibound states, and classical periodic orbits in HOCI

Barr, Alexander Michael 16 June 2011 (has links)
We study the classical nonlinear dynamics and the quantum vibrational energy eigenstates of the molecule HOCl. The classical vibrational dynamics, at energies below the HO+Cl dissociation energy, contains several saddle-center and period doubling bifurcations. The saddle-center bifurcations are shown to be due to a 2:1, and at higher energies a 3:1, nonlinear resonance between bend and stretch motions in various periodic orbits. The sequence of bifurcations takes the system from nearly integrable at low energies to almost completely chaotic at energies near the HO+Cl dissociation energy. At energies above dissociation we study the chaotic scattering of the Cl atom off the HO dimer. This scattering is governed by a homoclinic tangle formed by the stable and unstable manifolds of a parabolic periodic orbit at infinity. We construct the first three segments of the homoclinic tangle in phase space and use scattering functions to investigate its higher-order structure. For the quantum system we use a discrete variable representation to efficiently calculate the Hamiltonian matrix. We find 365 even and 357 odd parity eigenstates with energies below the dissociation energy. By plotting the eigenstates in configuration space we show that almost every quantum eigenstate can be associated with one or more of the classical periodic orbits. The classical bifurcations that give rise to new periodic orbits are manifest quantum mechanically through the sudden appearance of new classes of eigenstates. Despite the high degree of chaos in the classical dynamics at energies near the dissociation energy most quantum eigenstates remain highly ordered with recognizable nodal patterns. We use R-matrix theory together with a discrete variable representation to calculate quasibound states with energies above the dissociation energy. We find quasibound states with lifetimes ranging over 5 orders of magnitude. Using configuration space plots and Husimi distributions we show that the long-lived quasibound states are supported by unstable periodic orbits in the classical dynamics and medium-lived quasibound states are spread throughout the chaotic region of the classical phase space. Short-lived quasibound states show some similarity to unstable periodic orbits that stretch along the dissociation channel. / text
2

Interaction of the eta-meson with light nuclei

De Villiers, Jean Schepers 30 November 2005 (has links)
The long-standing problem of possible formation of metastable states in collisions of the eta-meson with atomic nuclei is revisited. The two-body eta-nucleon interaction is described by a local potential, which is constructed by fitting known low-energy parameters of this interaction. The many-body eta-nucleus potential obtained within the folding model, is used to search for metastable states of the systems formed by the eta-meson with hydrogen and helium isotopes. It is found that all these systems generate strings of overlapping resonances. / Physics / M.Sc. (Physics)
3

Interaction of the eta-meson with light nuclei

De Villiers, Jean Schepers 30 November 2005 (has links)
The long-standing problem of possible formation of metastable states in collisions of the eta-meson with atomic nuclei is revisited. The two-body eta-nucleon interaction is described by a local potential, which is constructed by fitting known low-energy parameters of this interaction. The many-body eta-nucleus potential obtained within the folding model, is used to search for metastable states of the systems formed by the eta-meson with hydrogen and helium isotopes. It is found that all these systems generate strings of overlapping resonances. / Physics / M.Sc. (Physics)

Page generated in 0.0589 seconds