• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elongational Flows in Polymer Processing

Hagen, Thomas Ch. 11 May 1998 (has links)
The production of long, thin polymeric fibers is a main objective of the textile industry. Melt-spinning is a particularly simple and effective technique. In this work, we shall discuss the equations of melt-spinning in viscous and viscoelastic flow. These quasilinear hyperbolic equations model the uniaxial extension of a fluid thread before its solidification. We will address the following topics: first we shall prove existence, uniqueness, and regularity of solutions. Our solution strategy will be developed in detail for the viscous case. For non-Newtonian and isothermal flows, we shall outline the general ideas. Our solution technique consists of energy estimates and fixed-point arguments in appropriate Banach spaces. The existence result for a simple transport equation is the key to understanding the quasilinear case. The second issue of this exposition will be the stability of the unforced frost line formation. We will give a rigorous justification that, in the viscous regime, the linearized equations obey the ``Principle of Linear Stability''. As a consequence, we are allowed to relate the stability of the associated strongly continuous semigroup to the numerical resolution of the spectrum of its generator. By using a spectral collocation method, we shall derive numerical results on the eigenvalue distribution, thereby confirming prior results on the stability of the steady-state solution. / Ph. D.

Page generated in 0.1396 seconds