• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Every Pure Quasinormal Operator Has a Supercyclic Adjoint

Phanzu, Serge Phanzu 20 August 2020 (has links)
No description available.
2

Normal Spectrum of a Subnormal Operator

Kumar, Sumit January 2013 (has links) (PDF)
Let H be a separable Hilbert space over the complex field. The class S := {N|M : N is normal on H and M is an invariant subspace for Ng of subnormal operators. This notion was introduced by Halmos. The minimal normal extension Ň of a subnormal operator S was introduced by σ (S) and then Bram proved that Halmos. Halmos proved that σ(Ň) (S) is obtained by filling certain number of holes in the spectrum (Ň) of the minimal normal extension Ň of a subnormal operator S. Let σ (S) := σ (Ň) be the spectrum of the minimal normal extension Ň of S; which is called the normal spectrum of a subnormal operator S: This notion is due to Abrahamse and Douglas. We give several well-known characterization of subnormality. Let C* (S1) and C* (S2) be the C*- algebras generated by S1 and S2 respectively, where S1 and S2 are bounded operators on H: Next we give a characterization for subnormality which is purely C - algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to answer the fol-lowing two questions. Let II be a *- representation from C* (S1) onto C* (S2) such that II(S1) = S2. If S1 is subnormal, then does it follow that S2 is subnormal? What is the relation between σ (S1) and σ (S2)? The first question was asked by Bram and second was asked by Abrahamse and Douglas. Answers to these questions were given by Bunce and Deddens.
3

Normal Spectrum of a Subnormal Operator

Kumar, Sumit January 2013 (has links) (PDF)
Let H be a separable Hilbert space over the complex field. The class S := {N|M : N is normal on H and M is an invariant subspace for Ng of subnormal operators. This notion was introduced by Halmos. The minimal normal extension Ň of a subnormal operator S was introduced by σ (S) and then Bram proved that Halmos. Halmos proved that σ(Ň) (S) is obtained by filling certain number of holes in the spectrum (Ň) of the minimal normal extension Ň of a subnormal operator S. Let σ (S) := σ (Ň) be the spectrum of the minimal normal extension Ň of S; which is called the normal spectrum of a subnormal operator S: This notion is due to Abrahamse and Douglas. We give several well-known characterization of subnormality. Let C* (S1) and C* (S2) be the C*- algebras generated by S1 and S2 respectively, where S1 and S2 are bounded operators on H: Next we give a characterization for subnormality which is purely C - algebraic. We also establish an intrinsic characterization of the normal spectrum for a subnormal operator, which enables us to answer the fol-lowing two questions. Let II be a *- representation from C* (S1) onto C* (S2) such that II(S1) = S2. If S1 is subnormal, then does it follow that S2 is subnormal? What is the relation between σ (S1) and σ (S2)? The first question was asked by Bram and second was asked by Abrahamse and Douglas. Answers to these questions were given by Bunce and Deddens.

Page generated in 0.0512 seconds