Spelling suggestions: "subject:"quasiparticles"" "subject:"quasiparticules""
1 |
Quasiparticle calculations for metal hydridesAlford, John Ashley, II 12 1900 (has links)
No description available.
|
2 |
Quasiparticles in quantum spin chains with strong axial exchange anisotropy /Lu, Ping, January 2009 (has links)
Thesis (Ph.D.) -- University of Rhode Island, 2009. / Typescript. Includes bibliographical references (leaves 132-135).
|
3 |
Some problems on the theory of many body systemsPaterson, Mary T. January 1968 (has links)
No description available.
|
4 |
Non-equilibrium superconductivity induced by X-ray photonsBrink, Paul Louis January 1995 (has links)
No description available.
|
5 |
Squeezing, entanglement and excitation spectra of BECs in optical lattices. / 光格子势中玻色爱因斯坦凝聚体的压缩,纠缠与激发谱 / Squeezing, entanglement and excitation spectra of BECs in optical lattices. / Guang ge zi shi zhong bo se ai yin si tan ning ju ti de ya suo, jiu chan yu ji fa puJanuary 2007 (has links)
Liu, Xiaopi = 光格子势中玻色爱因斯坦凝聚体的压缩,纠缠与激发谱 / 刘小披. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 97-100). / Abstracts in English and Chinese. / Liu, Xiaopi = Guang ge zi shi zhong bo se ai yin si tan ning ju ti de ya suo, jiu chan yu ji fa pu / Liu Xiaopi. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Review of Superfluidity and B.E. Condensation --- p.1 / Chapter 1.2 --- Our Understanding of superfluidity --- p.4 / Chapter 1.3 --- Non-classicality in Quantum Mechanics --- p.8 / Chapter 2 --- One-Component BECs in optical lattices --- p.16 / Chapter 2.1 --- Introduction: The Hamiltonian --- p.16 / Chapter 2.2 --- The Hamiltonian in Quasi-momentum space --- p.19 / Chapter 2.3 --- Bogoliubov Method and Equation of Motion --- p.21 / Chapter 2.3.1 --- Squeezing and Condensation --- p.27 / Chapter 2.3.2 --- Two-mode Entanglement and Squeezing --- p.31 / Chapter 3 --- Matrix method approach to ground state BECs --- p.39 / Chapter 3.1 --- Matrix method --- p.39 / Chapter 3.2 --- Ground state and Particle Distribution --- p.42 / Chapter 3.3 --- Correlation in Pair Ground State --- p.46 / Chapter 4 --- Attractive BECs in optical lattices --- p.50 / Chapter 5 --- 2-component BECs in optical lattice --- p.56 / Chapter 5.1 --- Model Hamiltonian --- p.56 / Chapter 5.2 --- Excitation Spectrum and Critical super-fluid velocity --- p.59 / Chapter 5.3 --- Excitation spectrum and Phase Separation Dynamics --- p.63 / Chapter 5.4 --- Excitation Spectrum for Asymmetric 2-component BECs --- p.67 / Chapter 6 --- Multi-Mode Squeezing of 2-component BECs in optical lattices --- p.69 / Chapter 6.1 --- Simultaneous Diagonalization --- p.69 / Chapter 6.2 --- Equation of Motion and Variance Matrix --- p.70 / Chapter 6.3 --- U(n) Squeezing of Variance Matrix --- p.75 / Chapter 6.4 --- Squeezing in the case qA≠ qB and nA≠ nB --- p.82 / Chapter 7 --- Entanglement between 2-component BECs in optical lattices --- p.83 / Chapter 7.1 --- Variance matrix in block diagonal --- p.83 / Chapter 7.2 --- 2-component entangled variance matrix --- p.86 / Chapter 7.3 --- Logarithmic negativity --- p.89 / Chapter 7.4 --- Beat oscillation mode of logarithmic negativity --- p.91 / Chapter 8 --- Conclusion and Outlook --- p.95 / Bibliography --- p.97
|
6 |
Interaction between collective coordinates and quasiparticles in spintronic devicesNúñez, Álvaro Sebastián 28 August 2008 (has links)
Not available / text
|
7 |
Studies of the vortex state in high-temperature superconductorsKnapp, Daniel. Kallin, Catherine. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2006. / Supervisor: Catherine Kallin. Includes bibliographical references (p. 168-177).
|
8 |
Interaction between collective coordinates and quasiparticles in spintronic devicesNúñez, Álvaro Sebastián, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
9 |
Ultrafast lattice dynamics in excitonic self-trapping of quasi-one dimensional materialsMorrissey, Francis Xavier, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2007. / Includes bibliographical references.
|
10 |
Termodinâmica de quase-partículas /Gardim, Fernando Gonçalves. January 2009 (has links)
Orientador: Fernanda Monti Steffens / Banca: Sandra dos Santos Padula / Banca: Jun Takahashi / Banca: Eduardo Souza Fraga / Banca: Manuel Máximo Bastos Malheiro de Oliveira / Resumo: O problema da inconsistência termodinâmica do modelo de quase-partículas foi parcialmente resolvido por Gorenstein e Yang há quase duas décadas. Entretanto sua solução mostra-se como uma solução particular para o problema da inconsistência termodinâmica. Este trabalho apresenta a solução geral para o modelo de quase-partículas a partir da generalização da solução de Gorenstein-Yang, estudando-se assim o modelo de quase-partículas em dois cenários diferentes: para o caso onde este é formado apenas por bósons, e quando é formado por bósons mais férmions e anti-férmions. Para o caso bosônico assume-se os bósons não-massivos, em um sistema à temperatura finita e potencial químico nulo, obtendo então sua solução termodinâmica geral. A partir desta utiliza-se uma solução particular para descrever a matéria desconfinada, o Plasma de Glúons, e compara-se esta solução com os dados provenientes de QCD na rede para pressão, entropia e energia interna. Estuda-se também a solução geral para um sistema à temperatura e potencial químico finitos formado por férmions, anti-férmions e bósons. O limite assintótico destas soluções também é analisado. Uma solução particular, análoga à utilizada no caso apenas de bósons, é utilizada para descrever os resultados de QCD na rede, para um Plasma de Quarks e Glúons. Este formalismo permite descrever o Plasma de Quarks e Glúons em toda região de desconfinamento. Seja no caso bosônico, ou no caso de bósons e férmions, encontra-se uma solução mais simples que a de Gorenstein-Yang para descrever o QGP / Abstract: The thermodynamics quasi-particle problem was partially solved by Gorenstein and Yang. Nevertheless, its solution is a particular solution of the thermodynamic inconsistency problem. In this work the thermodynamics of the quasi-particle model is studied from a generalization of the Gorenstein-Yang solution. This work is split in two parts: For the case of finite temperature and vanishing chemical potential for non-massive bosons, and for finite temperature and Chemical potential of anti-fermions, fermions plus bosons. For the boson case is computed the thermodynamical general solution and from it, a particular solution it is used to describe the deconfined matter, Gluon Plasma. This solution is compared to QCD lattice data, thus the pressure, entropy and internal energy can be fitted. Also is developed the solution for a system composed by fermions, antifermions and gluons. An analogue solution to boson case it is used to describe the real case, the Quark Gluon Plasma. It is shown that solution is able to describe the lattice data. This general formalism allows study the QGP in all deconfined region. Whether in the bosonic case, or in bosonic plus fermionic case, it is found a simpler solution than the Gorenstein-Yang / Doutor
|
Page generated in 0.0493 seconds