• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 23
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Phonon Quasiparticle Studies of Anharmonic Properties of Solids

Zhang, Zhen January 2023 (has links)
At the high-temperature conditions of the Earth's interior, lattice anharmonic effects in crystalline mineral phases can become pronounced. Anharmonicity, i.e., deviations of vibrations from harmonic oscillations, is caused by phonon-phonon interactions. Knowledge of lattice anharmonicity is essential to elucidate distinctive thermal properties in solids. Yet, accurate investigations of anharmonicity encounter difficulties owing to cumbersome computations. Here we present anharmonic property calculations with the phonon quasiparticle approach for various solids. The phonon quasiparticle approach efficiently and reliably addresses lattice anharmonicity by combining molecular dynamics and lattice dynamics calculations. It characterizes anharmonic phonons by extracting renormalized frequency and phonon lifetime from the mode-projected velocity autocorrelation function without explicitly computing higher-order interatomic force constants. In principle, it accounts for full anharmonic effects and overcomes finite-size effects typical of molecular dynamics. The validity and effectiveness of the current approach are demonstrated in computations of temperature-induced frequency shifts, anharmonic thermodynamics, phase boundaries, and lattice thermal conductivities of both weakly and strongly anharmonic, both insulating and metallic, and both simple and complex systems. These materials include a simple model crystal, Si with diamond structure, minerals of geophysical significance, MgSiO₃ perovskite and postperovskite, cubic CaSiO₃ perovskite, and B8 and B2 phases of FeO. Accurate anharmonic thermodynamic properties, phase boundaries, and lattice thermal conductivities presented in this thesis are important for geodynamic modeling. The theoretical framework validated in this thesis also enables predictive studies of various anharmonic materials which could not be previously addressed by conventional approaches, such as quasiharmonic approximation for thermodynamics calculations and finite displacement method for anharmonic lattice dynamics calculations.
22

Generating and using terahertz radiation to explore carrier dynamics of semiconductor and metal nanostructures

Jameson, Andrew D. 20 January 2012 (has links)
In this thesis, I present studies in the field of terahertz (THz) spectroscopy. These studies are divided into three areas: Development of a narrowband THz source, the study of carrier transport in metal thin films, and the exploration of coherent dynamics of quasi-particles in semiconductor nanostructures with both broadband and narrowband THz sources. The narrowband THz source makes use of type II difference frequency generation (DFG) in a nonlinear crystal to generate THz waves. By using two linearly chirped, orthogonally polarized optical pulses to drive the DFG, we were able to produce a tunable source of strong, narrowband THz radiation. The broadband source makes use of optical rectification of an ultra-short optical pulse in a nonlinear crystal to generate a single-cycle THz pulse. Linear spectroscopic measurements were taken on NiTi-alloy thin films of various thicknesses and titanium concentrations with broadband THz pulses as well as THz power transmission measurements. By applying a combination of the Drude model and Fresnel thin-film coefficients, we were able to extract the DC resistivity of the NiTi-alloy thin films. Using the narrowband source of THz radiation, we explored the exciton dynamics of semiconductor quantum wells. These dynamics were made sense of by observing time-resolved transmission measurements and comparing them to theoretical calculations. By tuning the THz photon energy near exciton transition energies, we were able to observe extreme nonlinear optical transients including the onset of Rabi oscillations. Furthermore, we applied the broadband THz waves to quantum wells embedded in a microcavity, and time-resolved reflectivity measurements were taken. Many interesting nonlinear optical transients were observed, including interference effects between the modulated polariton states in the sample. / Graduation date: 2012
23

A lattice model for topological phases

Andersson, Jonatan January 2013 (has links)
Matter exists in many different phases, for example in solid state or in liquid phase. There are also phases in which the ordering of atoms is the same, but which differ in some other respect, for example ferromagnetic and paramagnetic states. According to Landau's symmetry breaking theory every phase transition is connected to a symmetry breaking process. A solid material has discrete translational symmetry, while liquid phase has continuous translational symmetry. But it has turned out that there also exist phase transitions that can occur without a symmetry breaking. This phenomenon is called topological order. In this thesis we consider one example of a theoretical model constructed on a two dimensional lattice in which one obtains topological order.
24

Anharmonic Phonon Behavior using Hamiltonian constructed via Irreducible Derivatives

Xiao, Enda January 2023 (has links)
Phonon anharmonicity is critical for describing various phenomena in crystals, including lattice thermal conductivity, thermal expansion, structural phase transitions, and many others. Including anharmonicity in the calculation of condensed matter observables developed rapidly in the past decade. First-principles computation of cubic phonon interactions have been performed in many systems, and the quartic interactions have begun to receive more attention. In this study, reliable Hamiltonians are constructed purely in terms of quadratic, cubic, and quartic irreducible derivatives, which are calculated efficiently and precisely using the lone and bundled irreducible derivative approaches (LID and BID). The resulting Hamiltonians give rise to a nontrivial many-phonon problem which requires some approximation in order to compute observables. We implemented self-consistent diagrammatic approaches to evaluate the phonon self-energy, including the Hartree-Fock approximation for phonons and quasiparticle perturbation theory, where both the 4-phonon loop and the real part of the 3-phonon bubble are employed during self-consistency. Additionally, we implemented molecular dynamics in order to yield the numerically exact solution in the classical limit. The molecular dynamics solution is robust for directly comparing to experimental results at sufficiently high temperatures, and for assessing our diagrammatic approaches in the classical limit. Anharmonic vibrational Hamiltonians were constructed for CaF₂, ThO₂, and UO₂. Diagrammatic approaches were used to evaluate the phonon self-energy, yielding the phonon lineshifts and linewidths and the thermal conductivity within the relaxation time approximation. Our systematic results allowed us to resolve the paradox of why first-principles phonon linewidths strongly disagree with results extracted from inelastic neutron scattering (INS). We demonstrated that the finite region in reciprocal space required in INS data analysis, the 𝑞-voxel, must be explicitly accounted for within the calculation in order to draw a meaningful comparison. We also demonstrated that the 𝑞-voxel is important to properly compare the spectrum measured in inelastic X-ray scattering (IXS), despite the fact that the ?-voxel is much smaller. Accounting for the 𝑞-voxel, we obtained good agreement for the scattering function linewidths up to intermediate temperatures. Additionally, good agreement was obtained for the thermal conductivity. Another topic we addressed is translation symmetry breaking caused by factors such as defects, chemical disorders, and magnetic order. These phenomena will lead to shifts and a broadening of the phonon spectrum, and formally the single-particle Green’s function encodes these effects. However, it is often desirable to obtain an approximate non-interacting spectrum that contains the effective shifts of the phonon frequencies, allowing straightforward comparison with experimentally measured scattering peak locations. Such an effective phonon dispersion can be obtained using a band unfolding technique, and in this study, we formulated unfolding in the context of irreducible derivatives. We showcased the unfolding of phonons in UZr₂, where chemical disorder is present, and compared the results with experimental IXS data. Additionally, we extended the unfolding technique to anharmonic terms and demonstrated this using 3rd and 4th order terms in the antiferromagnetic phase of UO₂.
25

Quasiparticles in the Quantum Hall Effect

Kailasvuori, Janik January 2006 (has links)
<p>The fractional quantum Hall effect (FQHE), discovered in 1982 in a two-dimensional electron system, has generated a wealth of successful theory and new concepts in condensed matter physics, but is still not fully understood. The possibility of having nonabelian quasiparticle statistics has recently attracted attention on purely theoretical grounds but also because of its potential applications in topologically protected quantum computing.</p><p>This thesis focuses on the quasiparticles using three different approaches. The first is an effective Chern-Simons theory description, where the noncommutativity imposed on the classical space variables captures the incompressibility. We propose a construction of the quasielectron and illustrate how many-body quantum effects are emulated by a classical noncommutative theory.</p><p>The second approach involves a study of quantum Hall states on a torus where one of the periods is taken to be almost zero. Characteristic quantum Hall properties survive in this limit in which they become very simple to understand. We illustrate this by giving a simple counting argument for degeneracy 2<i>n</i><sup>-1</sup>, pertinent to nonabelian statistics, in the presence of 2<i>n</i> quasiholes in the Moore-Read state and generalise this result to 2<i>n</i>-<i>k</i> quasiholes and <i>k </i>quasielectrons.</p><p>In the third approach, we study the topological nature of the degeneracy 2<i>n</i><sup>-1</sup> by using a recently proposed analogy between the Moore-Read state and the two-dimensional spin-polarized p-wave BCS state. We study a version of this problem where one can use techniques developed in the context of high-<i>T</i>c superconductors to turn the vortex background into an effective gauge field in a Dirac equation. Topological arguments in the form of index theory gives the degeneracy 2<i>n</i><sup>-1</sup> for 2<i>n</i> vortices.</p>
26

Quasiparticles in the Quantum Hall Effect

Kailasvuori, Janik January 2006 (has links)
The fractional quantum Hall effect (FQHE), discovered in 1982 in a two-dimensional electron system, has generated a wealth of successful theory and new concepts in condensed matter physics, but is still not fully understood. The possibility of having nonabelian quasiparticle statistics has recently attracted attention on purely theoretical grounds but also because of its potential applications in topologically protected quantum computing. This thesis focuses on the quasiparticles using three different approaches. The first is an effective Chern-Simons theory description, where the noncommutativity imposed on the classical space variables captures the incompressibility. We propose a construction of the quasielectron and illustrate how many-body quantum effects are emulated by a classical noncommutative theory. The second approach involves a study of quantum Hall states on a torus where one of the periods is taken to be almost zero. Characteristic quantum Hall properties survive in this limit in which they become very simple to understand. We illustrate this by giving a simple counting argument for degeneracy 2n-1, pertinent to nonabelian statistics, in the presence of 2n quasiholes in the Moore-Read state and generalise this result to 2n-k quasiholes and k quasielectrons. In the third approach, we study the topological nature of the degeneracy 2n-1 by using a recently proposed analogy between the Moore-Read state and the two-dimensional spin-polarized p-wave BCS state. We study a version of this problem where one can use techniques developed in the context of high-Tc superconductors to turn the vortex background into an effective gauge field in a Dirac equation. Topological arguments in the form of index theory gives the degeneracy 2n-1 for 2n vortices.
27

Charge dynamics in superconducting double dots

Esmail, Adam Ashiq January 2017 (has links)
The work presented in this thesis investigates transitions between quantum states in superconducting double dots (SDDs), a nanoscale device consisting of two aluminium superconducting islands coupled together by a Josephson junction, with each dot connected to a normal state lead. The energy landscape consists of a two level manifold of even charge parity Cooper pair states, and continuous bands corresponding to charge states with single quasiparticles in one or both islands. These devices are fabricated using shadow mask evaporation, and are measured at sub Kelvin temperatures using a dilution refrigerator. We use radio frequency reflectometry to measure quantum capacitance, which is dependent on the quantum state of the device. We measure the quantum capacitance as a function of gate voltage, and observe capacitance maxima corresponding to the Josephson coupling between even parity states. We also perform charge sensing and detect odd parity states. These measurements support the theoretical model of the energy landscape of the SDD. By measuring the quantum capacitance in the time domain, we observe random switching of capacitance between two levels. We determine this to be the stochastic breaking and recombination of single Cooper pairs. By carrying out spectroscopy of the bath responsible for the pair breaking we attribute it to black-body radiation in the cryogenic environment. We also drive the breaking process with a continuous microwave signal, and find that the rate is linearly proportional to incident power. This suggests that a single photon process is responsible, and demonstrates the potential of the SDD as a single photon microwave detector. We investigate this mechanism further, and design an experiment in which the breaking rate is enhanced when the SDD is in the antisymmetric state rather than the symmetric state. We also measure the quantum capacitance of a charge isolated double dot. We observe 2e periodicity, indicating the tunnelling of Cooper pairs and the lack of occupation of quasiparticle states. This work is relevant to the range of experiments investigating the effect of non-equilibrium quasiparticles on the operation of superconducting qubits and other superconducting devices.
28

Odd-frequency pairs and Josephson current through a strong ferromagnet

Asano, Yasuhiro, Sawa, Yuki, Tanaka, Yukio, Golubov, Alexander A. 12 1900 (has links)
No description available.
29

Variants of P-frames and associated rings

Nsayi, Jissy Nsonde 12 1900 (has links)
We study variants of P-frames and associated rings, which can be viewed as natural generalizations of the classical variants of P-spaces and associated rings. To be more precise, we de ne quasi m-rings to be those rings in which every prime d-ideal is either maximal or minimal. For a completely regular frame L, if the ring RL of real-valued continuous functions of L is a quasi m-ring, we say L is a quasi cozero complemented frame. These frames are less restricted than the cozero complemented frames. Using these frames we study some properties of what are called quasi m-spaces, and observe that the property of being a quasi m-space is inherited by cozero subspaces, dense z- embedded subspaces, and regular-closed subspaces among normal quasi m-space. M. Henriksen, J. Mart nez and R. G. Woods have de ned a Tychono space X to be a quasi P-space in case every prime z-ideal of C(X) is either minimal or maximal. We call a point I of L a quasi P-point if every prime z-ideal of RL contained in the maximal ideal associated with I is either maximal or minimal. If all points of L are quasi P-points, we say L is a quasi P-frame. This is a conservative de nition in the sense that X is a quasi P-space if and only if the frame OX is a quasi P-frame. We characterize these frames in terms of cozero elements, and, among cozero complemented frames, give a su cient condition for a frame to be a quasi P-frame. A Tychono space X is called a weak almost P-space if for every two zero-sets E and F of X with IntE IntF, there is a nowhere dense zero-set H of X such that E F [H. We present the pointfree version of weakly almost P-spaces. We de ne weakly regular rings by a condition characterizing the rings C(X) for weak almost P-spaces X. We show that a reduced f-ring is weakly regular if and only if every prime z-ideal in it which contains only zero-divisors is a d-ideal. We characterize the frames L for which the ring RL of real-valued continuous functions on L is weakly regular. We introduce the notions of boundary frames and boundary rings, and use them to give another ring-theoretic characterization of boundary spaces. We show that X is a boundary space if and only if C(X) is a boundary ring. A Tychono space whose Stone- Cech compacti cation is a nite union of closed subspaces each of which is an F-space is said to be nitely an F-space. Among normal spaces, S. Larson gave a characterization of these spaces in terms of properties of function rings C(X). By extending this notion to frames, we show that the normality restriction can actually be dropped, even in spaces, and thus we sharpen Larson's result. / Mathematics / D. Phil. (Mathematics)
30

Cohérence, brouillage et dynamique de phase dans un condensat de paires de fermions / Coherence, blurring and phase dynamics in a pair-condensed Fermi gas

Kurkjian, Hadrien 19 May 2016 (has links)
On considère généralement que la fonction d’onde macroscopique décrivant un condensat de paires de fermions possède une phase parfaitement définie et immuable. En réalité, il n’existe que des systèmes de taille finie, préparés à température non nulle ; le condensat possède alors un temps de cohérence fini, même lorsque le système est isolé. Cet effet fondamental, crucial pour les applications qui exploitent la cohérence macroscopique, restait très peu étudié.Dans cette thèse, nous relions le temps de cohérence à la dynamique de phase du condensat, et nous montrons par une approche microscopique que la dérivée temporelle de l’opérateur phase ˆθ0 est proportionnelle à un opérateur potentiel chimique qui inclut les deux branches d’excitations du gaz : celle, fermionique, de brisure des paires et celle, bosonique, de mise en mouvement de leur centre de masse. Pour une réalisation donnée de l’énergie E et du nombre de particules N, la phase évolue aux temps longs comme −2μmc(E,N)t/~ où μmc(E,N) est le potentiel chimique microcanonique ; les fluctuations de E et de N d’une réalisation à l’autre conduisent alors à un brouillage balistique de la phase, et à une décroissance gaussienne de la fonction de cohérence temporelle avec un temps caractéristique ∝ N1/2. En l’absence de telles fluctuations, la décroissance est au contraire exponentielle avec un temps de cohérence qui diverge linéairement en N à cause du mouvement diffusif de ˆθ0 dans l’environnement des modes excités. Nous donnons une expression explicite de ce temps caractéristique à bassetempérature dans le cas d’une branche d’excitation bosonique convexe lorsque les phonons interagissent via les processus 2 ↔ 1 de Beliaev-Landau. Enfin, nous proposons des méthodes permettant de mesurer avec un gaz d’atomes froids chaque contribution au temps de cohérence / It is generally assumed that a condensate of paired fermions at equilibrium is characterized by a macroscopic wavefunction with a well-defined, immutable phase. In reality, all systems have a finite size and are prepared at non-zero temperature ; the condensate has then a finite coherence time, even when the system is isolated. This fundamental effect, crucial for applicationsusing macroscopic coherence, was scarcely studied. Here, we link the coherence time to the condensate phase dynamics, and show using a microscopic theory that the time derivative of the condensate phase operator ˆθ0 is proportional to a chemical potential operator which includes both the fermionic pair-breaking and the bosonic pair-motion excitation branches.For a given realization of the number of particle N and of the energy E, the phase evolves at long times as −2μmc(E,N)t/~ where μmc(E,N) is the microcanonical chemical potential ; fluctuations of N and E from one realization to the other then lead to a ballistic spreading of the phase and to a Gaussian decay of the temporal coherence function with a characteristictime ∝ N1/2. On the contrary, in the absence of energy and number fluctuations, the decay of the temporal coherence function is exponential with a characteristic time scaling as N due to the diffusive motion of ˆθ0 in the environnement created by the excited modes. We give an explict expression of this characteristic time at low temperature in the case where the bosonicbranch is convex and the phonons undergo 2 ↔ 1 Beliaev-Landau process. Finally, we propose methods to measure each contribution to the coherence time using ultracold atoms.

Page generated in 0.041 seconds