• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Class of Highly Reactive and Stereoselective Stereogenic-at-Mo Catalysts for Olefin Metathesis

Malcolmson, Steven Joseph January 2010 (has links)
Thesis advisor: Amir H. Hoveyda / In the course of a total synthesis of quebrachamine, we were faced with a late-stage enantioselective ring-closing metathesis that could not be promoted by any of the state-of-the-art chiral metathesis catalysts. To overcome this deficiency, we designed and developed a new class of catalysts based on mechanistic and theoretical principles. The new catalysts contain a stereogenic metal center and display unprecedented levels of reactivity and selectivity in enantioselective olefin metathesis, enabling us to complete our planned synthesis of quebrachamine. We have also discovered that non-productive metathesis reactions with stereogenic-at-Mo catalysts, generated and used in situ as a mixture of diastereomers, are crucial to the efficiency and enantioselectivity of the ring-closing metathesis reactions. Specifically, our studies have indicated that the two diastereomers of catalyst are in rapid equilibrium due to non-productive metathesis with ethylene, generated as the desired ring-closing reaction proceeds, thereby establishing a reaction manifold that is under Curtin-Hammett control. Finally, in our efforts to prepare air-stable precursors to stereogenic-at-Mo olefin metathesis catalysts, we have examined the addition of N,N-chelating ligands to Mo bis-pyrrolide complexes. Upon addition of 2,2′-bipyridyl to bis-dimethylpyrrolide Mo complexes, rather than the expected octahedral chelate, a five-coordinate monopyrrolide alkylidyne complex is generated. The complex displays good air-stability and efficiently serves as a precursor to stereogenic-at-Mo alkylidene catalysts; several alkylidyne complexes have been prepared. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Enantiospecific Total Synthesis of Indole Alkaloids Eburnamonine, Aspidospermidine, Quebrachamine, Henrycinols A and B and Synthesis of Azepino [4,5 -b] Indolones

Nidhiry, John Eugene January 2014 (has links) (PDF)
The thesis entitled “Enantiospecific total synthesis of indole alkaloids eburnamonine, aspidospermidine, quebrachamine, henrycinols A and B and synthesis of azepino[4,5-b]indolones” is divided into three chapters. In the first chapter, a unified strategy for the enantiospecific total synthesis of monoterpene indole alkaloids (+)-eburnamonine (1), (–)-aspidospermidine (2) and (–)-quebrachamine (3) is described. The chiral pool synthesis commenced with (S)-ethyl lactate 4, which was elaborated to the allylic alcohol 5. Johnson-Claisen orthoester rearrangement of the allylic alcohol 5 furnished the key chiral building block 6 possessing a quaternary stereogenic center. Pictet-Spengler cyclization of tryptamine with the corresponding aldehydes obtained by appropriate functionalization of the chiral building block 6 and ring closing metathesis were the key reactions employed en route the total synthesis of the indole alkaloids 1–3 (Scheme 1). Scheme 1. Unified strategy for the synthesis of monoterpene indole alkaloids (+)-eburnamonine (1), (–)-aspidospermidine (2) and (–)-quebrachamine (3). The second chapter of the thesis pertains to the synthesis of azepino[4,5-b]indolones 7 via Brønsted acid mediated intramolecular cyclization of unsaturated tryptamides 8. Various ,-unsaturated acids 9 derived from different -hydroxy esters 10, were converted to the corresponding unsaturated tryptamides 8 and subjected to the optimized reaction conditions. The results of the study indicated that -substituted unsaturated secondary tryptamides derived from (S)-ethyl lactate were the most effective in undergoing an intramolecular cyclization to furnish the corresponding azepino[4,5-b]indolones 7, possessing a quaternary stereogenic center in good yields. The presence of an alkenyl moiety in the quaternary center allowed the functionalization of these compounds and was subsequently employed to access the ABCD core 11 of tronocarpine and the tetracyclic cores 12 of some iboga alkaloids. The loss of chirality in the formation of the azepino[4,5-b]indolones indicated that the reaction proceeds predominantly by an SN1 pathway. During the course of the study an interesting formation of an azonino[5,4-b]indolone 13 by a competing SN1 pathway and a tetracyclic azepino[4,5-b]indolone 14 via a cascade cyclization were noticed (Scheme 2). Scheme 2. Synthesis of azepino[4,5-b]indolones 7 possessing a quaternary stereogenic center. The first total synthesis of two new indole alkaloids, henrycinols A (15) and B (16) which were isolated from the plant Melodinus henryi CRAIB is described in the third chapter of the thesis. The key reaction in the synthetic sequence is the Pictet-Spengler cyclization of L-tryptophan methyl ester 17a and the aldehyde 18 derived from D-tartaric acid which leads to the installation of all the stereogenic centers present in the natural products. Interestingly, a switch in the diastereoselectivity of the reaction was observed by varying the substituent on the amine in L-tryptophan methyl ester 17. When L-tryptophan methyl ester 17b possessing an N-allyl substitution was employed, the desired 1,3-trans tetrahydro--carboline 19b could be obtained in good yields, which was subsequently elaborated to the natural products 15 and 16 (Scheme 3). Scheme 3. Total synthesis of henrycinols A (15) and B (16).

Page generated in 0.0555 seconds