• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strukturen der Kraftübertragung im quergestreiften Muskel Protein-Protein-Wechselwirkungen und Regulationsmechanismen /

Gehmlich, Katja. January 2005 (has links) (PDF)
Potsdam, Univ., Diss., 2005. / Computerdatei im Fernzugriff.
2

Strukturen der Kraftübertragung im quergestreiften Muskel Protein-Protein-Wechselwirkungen und Regulationsmechanismen /

Gehmlich, Katja. January 2005 (has links) (PDF)
Potsdam, Universiẗat, Diss., 2005.
3

Structural studies on the association of filamentous proteins in the human M-Bands / Strukturelle Studien zur Zusammenlagerung filamentöser Protein in humanen M-Banden

Sauer, Florian January 2011 (has links) (PDF)
Cross-striated muscles enable higher animals to perform directed movements and to create mechanical force. The cells of heart and skeletal muscles consist of myofibrils, serial arrays of the smallest contractile subunits, the sarcomeres. Main components of the sarcomeres are the thin and thick filaments, large protein assemblies consisting of mainly actin (thin filaments) and myosin (thick filaments), whose energy-dependent interaction is responsible for the contraction of sarcomeres and so of the whole muscle. The thin filaments are anchored in the sarcomere bordering Z-discs, while the thick filaments are anchored in the M-bands, traverse structures in the sarcomere center. Electron-microscopic studies revealed that the M-bands consist of regular, lattice-like structures that appear to cross-link the thick filaments. A number of proteins could be identified by immune-fluorescence and biochemical binding studies to be present and interact with each other in the M-bands. These data have been integrated into preliminary models of the M-bands. Detailed knowledge of how these proteins interact with each other in the center of the sarcomeres is, however, largely missing. The current study focuses on the structural characterization of the interactions between the titin, myomesin-1, obscurin and obscurin-like 1 (OBSL1), modular filamentous proteins interacting with each other in the M-bands. The high-resolution crystal structure of the titin M10 – OBSL1 Ig1 complex was solved. The structure and additional biophysical data show that titin and OBSL1 as well as titin and obscurin form stable binary complexes through the formation of a small intermolecular ß-sheet. In contrast to previously characterized intermolecular assemblies of sarcomeric proteins, this sheet is formed between parallel non- homologous ß-strands of the interaction partners. The investigation of disease-related variants of the M10 domain by biophysical methods did not allow to draw unambiguous conclusions on a direct connection between impaired OBSL1/obscurin binding and disease development. Two out of four known M10 variants have effects on the correct domain folding and so interfere with the ability to bind obscurin/OBSL1. The two other known variants displayed however only minor effects on fold and binding affinities. It should therefore be further elucidated whether a direct connection between impaired complex formation and disease development exists. -I- Abstract A direct interaction between titin and myomesin-1 could not be confirmed in vitro. Possible explanations for the different results are discussed. While the consequences of the inability of both proteins to interact are unclear, the further characterization of the putative interacting parts of titin and myomesin-1 led to the discovery of two new potential sites of self-assembly on M-band titin and myomesin-1. The crystal structure of titin M4 showed that this domain can form dimeric assemblies through the formation of a disulfide bridge and an intermolecular metal binding site between residues that are unique to this domain. On myomesin-1, in addition to the described C-terminal interaction site, a potential second site of self-assembly was found in its central Fn3-domain segment. The interacting site was mapped to the predicted Fn3 domain My5. The crystal structure of the domain in its dimeric form showed that the interaction is mediated by a mechanism that has previously not been observed in sarcomeric proteins. Two My5 interact with each other by the mutual exchange of an N-terminal ß-strand which complements the Fn3 fold on the binding partner. This type of interaction can be interpreted as misfolding. However, the position of the interacting domain and its mode of interaction allowed the postulation of a model of how myomesin-1 could be integrated in the M-bands. This model is in good agreement with the electron-microscopic appearance of the M-bands. / Die quergestreifte Muskulatur befähigt höhere Tiere zur zielgerichteten Bewegung und Ausübung mechanischer Kraft. Herz- und Skelettmuskelzellen bestehen aus Myofibrillen, die wiederum aus aneinandergereihten, kleinen kontrahierenden Untereinheiten, den Sarkomeren aufgebaut sind. Hauptbestandteile der Sarkomere sind die dünnen und dicken Filamente, große Proteinkomplexe die hauptsächlich aus Aktin (dünne Filamente) und Myosin (dicke Filamente) bestehen und deren energieabhängige Interaktion für die Kontraktion der Sarkomere und damit des gesamten Muskels verantwortlich sind. Die dünnen Filamente sind in den Sarkomer-begrenzenden Z-Scheiben und die dicken Filamente in der M-Bande im Zentrum der Sarkomere verankert. Elektronenmikroskopische Studien zeigten, dass die M-Banden aus regelmäßigen, gerüstartigen Strukturen bestehen, die die dicken Filamente querzuvernetzen scheinen. Durch Immunfluoreszenz und Bindungstudien konnte eine Anzahl an Proteinen identifiziert werden, die neben Myosin am Aufbau dieses Gerüsts beteiligt sein könnten. Basierend auf diesen Daten wurden vorläufige Modelle des Aufbaus der M-Banden postuliert. Eine detaillierte Charakterisierung der Interaktionen dieser Proteine auf struktureller Ebene hat bisher jedoch nicht stattgefunden. Die hier präsentierte Arbeit beschäftigt sich mit der strukturellen Charakterisierung der Interaktionen zwischen den Proteinen Titin, Myomesin-1, Obscurin und OBSL1 in den M-Banden von Wirbeltiersarkomeren. Die hochaufgelöste Kristallstruktur des Titin M10 – OBSL1 Komplexes wurde gelöst. Die Struktur und zusätzliche biophysikalische Daten zeigen, dass der C- Terminus von Titin und die N-termini von OBSL1 bzw. Obscurin stabile, binäre Komplexe ausbilden. Im Gegensatz zu schon bekannten Komplexen zwischen Ig- ähnlichen Domänen sarkomerer Proteine, wird die Interaktion hier durch die Ausbildung eines intermolekularen ß-Faltblattes zwischen parallel orientierten ß- Strängen, vermittelt. Die Untersuchung von Varianten der M10 Domäne, die mit der Entwicklung von erblichen Muskelkrankheiten in Zusammenhang gebracht werden, ließen keine eindeutigen Schlussfolgerungen darüber zu, ob ein direkter Zusammenhang zwischen der Beeinträchtigung der Bindung an Obscurin/OBSL1 und der Entwicklung der - III - Zusammenfassung Krankheiten besteht. Zwei der vier bekannten M10 Varianten haben Auswirkungen auf die korrekte Faltung der Domäne, weshalb sie Obscurin und OBSL1 nicht binden können. Die beiden anderen Varianten zeigten jedoch nur geringfügige Auswirkungen auf Faltung und Affinität zu Obscurin und OBSL1. Es sollte daher weiter untersucht werden, ob ein direkter Zusammenhang zwischen der Bindung an Obscurin oder OBSL1 und der Entstehung vor Muskelkrankheiten besteht. Eine direkte Interaktion zwischen Titin und Myomesin-1 in vitro konnte nicht bestätigt werden. Verschiedene Erklärungen die zu den Unterschieden zwischen den hier gezeigten negativen und den an anderer Stelle beschrieben positiven Ergebnissen der Bindungsstudien geführt haben könnten, werden diskutiert. Die Konsequenzen der möglichen ‘Unfähigkeit’ Titins mit Myomesin-1 zu interagieren sind momentan unklar. Die weitere Charakterisierung der vermeintlichen Bindungspartner führte jedoch zur Entdeckung zweier neuer Selbstbindungsstellen auf Titin und Myomesin-1. Die Kristallstruktur der Ig-ähnlichen Domäne M4 von Titin zeigte, dass diese durch einer intermolekularen Disulfidbrücke und einer Zinkkoordinierungsstelle, Dimere bilden kann. Zusätzlich zu der beschrieben C-terminalen, wurde eine mögliche zweite Selbstbindungsstelle auf Myomesin-1 im zentralen Fn3-Domänensegment des Proteins entdeckt. Der für die Bindung verantwortliche Bereich konnte auf die Fn3 Domäne My5 eingegrenzt werden. Die Kristallstruktur der Domäne in ihrer dimeren Form zeigte, dass die Interaktion durch einen zuvor bei Muskelproteinen nicht beschriebenen Mechanismus vermittelt wird. Zwei My5-Domänen interagieren durch den gegenseitigen Austausch eines N-terminalen ß-Stranges, der die Faltung des Bindunspartners komplementiert. Diese Art von Proteininteraktion kann als Resultat der Fehlfaltung der Domäne interpretiert werden. Die Position der interagierenden Domäne und die Art der Interaktion erlaubten es jedoch, ein Modell aufzustellen, das erklären könnte, wie Myomesin-1 in die M-banden eingebaut ist. Dieses Modell stimmt mit dem elektronenmikroskopischen Erscheinungsbild der M-Banden gut überein.
4

Untersuchungen an neuartigen Serin-Threonin-Kinase-Inhibitoren für die In-vivo-Visualisierung von Signaltransduktionswegen des quergestreiften Muskels

Franzen, Gereon. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Dortmund.
5

Strukturen der Kraftübertragung im quergestreiften Muskel : Protein-Protein-Wechselwirkungen und Regulationsmechanismen / Structures of force transduction in cross-striated muscle tissues : protein-protein interactions and mechanisms of their regulation

Gehmlich, Katja January 2004 (has links)
Im Mittelpunkt dieser Arbeit standen Signaltransduktionsprozesse in den Strukturen der Kraftübertragung quergestreifter Muskelzellen, d. h. in den Costameren (Zell-Matrix-Kontakten) und den Glanzstreifen (Zell-Zell-Kontakten der Kardiomyozyten).<br><br>Es ließ sich zeigen, dass sich die Morphologie der Zell-Matrix-Kontakte während der Differenzierung von Skelettmuskelzellen dramatisch ändert, was mit einer veränderten Proteinzusammensetzung einhergeht. Immunfluoreszenz-Analysen von Skelettmuskelzellen verschiedener Differenzierungsstadien implizieren, dass die Signalwege, welche die Dynamik der Fokalkontakte in Nichtmuskelzellen bestimmen, nur für frühe Stadien der Muskeldifferenzierung Relevanz haben können. Ausgehend von diesem Befund wurde begonnen, noch unbekannte Signalwege zu identifizieren, welche die Ausbildung von Costameren kontrollieren: In den Vorläuferstrukturen der Costamere gelang es, eine transiente Interaktion der Proteine Paxillin und Ponsin zu identifizieren. Biochemische Untersuchungen legen nahe, dass Ponsin über eine Skelettmuskel-spezifische Insertion im Carboxyterminus das Adapterprotein Nck2 in diesen Komplex rekrutiert. Es wird vorgeschlagen, dass die drei Proteine einen ternären Signalkomplex bilden, der die Umbauvorgänge der Zell-Matrix-Kontakte kontrolliert und dessen Aktivität von mitogen activated protein kinases (MAPK) reguliert wird.<br><br>Die Anpassungsvorgänge der Strukturen der Kraftübertragung an pathologische Situtation (Kardiomyopathien) in der adulten quergestreiften Muskulatur wurden ausgehend von einem zweiten Protein, dem muscle LIM protein (MLP), untersucht. Es konnte gezeigt werden, dass ein mutiertes MLP-Protein, das im Menschen eine hypertrophe Kardiomyopathie (HCM) auslöst, strukturelle Defekte aufweist und weniger stabil ist. Weiterhin zeigte dieses mutierte Protein eine verringerte Bindungsfähigkeit an die beiden Liganden N-RAP und alpha-Actinin. Die molekulare Grundlage der HCM-verursachenden Mutationen im MLP-Gen könnte folglich eine Veränderung der Homöostase im ternären Komplex MLP &ndash; N-RAP &ndash; alpha-Actinin sein. Die Expressionsdaten eines neu generierten monoklonalen MLP-Antikörpers deuten darauf hin, dass die Funktionen des MLP nicht nur für die Integrität des Myokards, sondern auch für die der Skelettmuskulatur notwendig sind. / The cell-matrix-contacts (costameres) and cell-cell-contacts (intercalated discs of cardiomyocytes) of cross-striated muscle cells transmit mechanical forces to the exterior. On top of this mechanical function, both structures have been implied to be involved in signal transduction processes.<br><br>Dramatic morphological changes in the overall structure of cell-matrix-contacts of skeletal muscle cells were revealed during differentiation. Moreover, this reorganisation was accompanied by alterations in protein composition. Immunofluorescence microscopy indicated that signalling pathways which control the dynamics of focal contacts in non-muscle cells seem to be important only for early differentiation stages of skeletal muscle cells. To explore novel signalling pathways involved in regulating the formation of costameres, signalling molecules engaged were identified. Thus, paxillin and ponsin transiently interact at the precursors of costameres during muscle development. In addition, biochemical data indicate that a skeletal muscle specific module in the carboxyterminal part of ponsin can recruit the adapter protein Nck2 to this complex. Hence, the three proteins might form a ternary signalling complex involved in controlling the reorganisation of cell-matrix-contacts. Apparently, the activity of this signalling complex is regulated by mitogen activated protein kinases (MAPK).<br><br>A second approach has focussed on adaptational processes of the same structures observed in pathological situations. In particular, the role of muscle LIM protein (MLP) in hypertrophic cardiomyopathy (HCM) was investigated. It was shown that a HCM-causing mutant MLP protein fails to fold properly and that the consequent loss of stability is reflected in altered binding properties: the mutant MLP protein shows decreased binding to both N-RAP and alpha-actinin. Hence, the molecular basis for HCM-causing mutations in the MLP gene might be an altered homeostasis of the ternary complex MLP &ndash; N-RAP &ndash; alpha-actinin. Increasing evidence indicates that the functions of MLP are required not only for the integrity of the myocardium. In addition, MLP seems to have regulatory functions in skeletal muscle tissues.

Page generated in 0.0792 seconds