• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Usage-driven unified model for user profile and data source profile extraction / Model unifié dérigé par l'usage pour l'extraction du profile de l'utilisateur et de la source de donnée

Limam, Lyes 24 June 2014 (has links)
La problématique traitée dans la thèse s’inscrit dans le cadre de l’analyse d’usage dans les systèmes de recherche d’information. En effet, nous nous intéressons à l’utilisateur à travers l’historique de ses requêtes, utilisées comme support d’analyse pour l’extraction d'un profil d’usage. L’objectif est de caractériser l’utilisateur et les sources de données qui interagissent dans un réseau afin de permettre des comparaisons utilisateur-utilisateur, source-source et source-utilisateur. Selon une étude que nous avons menée sur les travaux existants sur les modèles de profilage, nous avons conclu que la grande majorité des contributions sont fortement liés aux applications dans lesquelles ils étaient proposés. En conséquence, les modèles de profils proposés ne sont pas réutilisables et présentent plusieurs faiblesses. Par exemple, ces modèles ne tiennent pas compte de la source de données, ils ne sont pas dotés de mécanismes de traitement sémantique et ils ne tiennent pas compte du passage à l’échelle (en termes de complexité). C'est pourquoi, nous proposons dans cette thèse un modèle d’utilisateur et de source de données basé sur l’analyse d’usage. Les caractéristiques de ce modèle sont les suivantes. Premièrement, il est générique, permettant de représenter à la fois un utilisateur et une source de données. Deuxièmement, il permet de construire le profil de manière implicite à partir de l’historique de requêtes de recherche. Troisièmement, il définit le profil comme un ensemble de centres d’intérêts, chaque intérêt correspondant à un cluster sémantique de mots-clés déterminé par un algorithme de clustering spécifique. Et enfin, dans ce modèle le profil est représenté dans un espace vectoriel. Les différents composants du modèle sont organisés sous la forme d’un Framework, la complexité de chaque composant y est évaluée. Le Framework propose : - une méthode pour la désambigüisation de requêtes; - une méthode pour la représentation sémantique des logs sous la forme d’une taxonomie ; - un algorithme de clustering qui permet l’identification rapide et efficace des centres d’intérêt représentés par des clusters sémantiques de mots clés ; - une méthode pour le calcul du profil de l’utilisateur et du profil de la source de données à partir du modèle générique. Le Framework proposé permet d'effectuer différentes tâches liées à la structuration d’un environnement distribué d’un point de vue usage. Comme exemples d’application, le Framework est utilisé pour la découverte de communautés d’utilisateurs et la catégorisation de sources de données. Pour la validation du Framework, une série d’expérimentations est menée en utilisant des logs du moteur de recherche AOL-search, qui ont démontrées l’efficacité de la désambigüisation sur des requêtes courtes, et qui ont permis d’identification de la relation entre le clustering basé sur une fonction de qualité et le clustering basé sur la structure. / This thesis addresses a problem related to usage analysis in information retrieval systems. Indeed, we exploit the history of search queries as support of analysis to extract a profile model. The objective is to characterize the user and the data source that interact in a system to allow different types of comparison (user-to-user, source-to-source, user-to-source). According to the study we conducted on the work done on profile model, we concluded that the large majority of the contributions are strongly related to the applications within they are proposed. As a result, the proposed profile models are not reusable and suffer from several weaknesses. For instance, these models do not consider the data source, they lack of semantic mechanisms and they do not deal with scalability (in terms of complexity). Therefore, we propose a generic model of user and data source profiles. The characteristics of this model are the following. First, it is generic, being able to represent both the user and the data source. Second, it enables to construct the profiles in an implicit way based on histories of search queries. Third, it defines the profile as a set of topics of interest, each topic corresponding to a semantic cluster of keywords extracted by a specific clustering algorithm. Finally, the profile is represented according to the vector space model. The model is composed of several components organized in the form of a framework, in which we assessed the complexity of each component. The main components of the framework are: - a method for keyword queries disambiguation; - a method for semantically representing search query logs in the form of a taxonomy; - a clustering algorithm that allows fast and efficient identification of topics of interest as semantic clusters of keywords; - a method to identify user and data source profiles according to the generic model. This framework enables in particular to perform various tasks related to usage-based structuration of a distributed environment. As an example of application, the framework is used to the discovery of user communities, and the categorization of data sources. To validate the proposed framework, we conduct a series of experiments on real logs from the search engine AOL search, which demonstrate the efficiency of the disambiguation method in short queries, and show the relation between the quality based clustering and the structure based clustering.
2

Learning with Markov logic networks : transfer learning, structure learning, and an application to Web query disambiguation

Mihalkova, Lilyana Simeonova 18 March 2011 (has links)
Traditionally, machine learning algorithms assume that training data is provided as a set of independent instances, each of which can be described as a feature vector. In contrast, many domains of interest are inherently multi-relational, consisting of entities connected by a rich set of relations. For example, the participants in a social network are linked by friendships, collaborations, and shared interests. Likewise, the users of a search engine are related by searches for similar items and clicks to shared sites. The ability to model and reason about such relations is essential not only because better predictive accuracy is achieved by exploiting this additional information, but also because frequently the goal is to predict whether a set of entities are related in a particular way. This thesis falls within the area of Statistical Relational Learning (SRL), which combines ideas from two traditions within artificial intelligence, first-order logic and probabilistic graphical models to address the challenge of learning from multi-relational data. We build on one particular SRL model, Markov logic networks (MLNs), which consist of a set of weighted first-order-logic formulae and provide a principled way of defining a probability distribution over possible worlds. We develop algorithms for learning of MLN structure both from scratch and by transferring a previously learned model, as well as an application of MLNs to the problem of Web query disambiguation. The ideas we present are unified by two main themes: the need to deal with limited training data and the use of bottom-up learning techniques. Structure learning, the task of automatically acquiring a set of dependencies among the relations in the domain, is a central problem in SRL. We introduce BUSL, an algorithm for learning MLN structure from scratch that proceeds in a more bottom-up fashion, breaking away from the tradition of top-down learning typical in SRL. Our approach first constructs a novel data structure called a Markov network template that is used to restrict the search space for clauses. Our experiments in three relational domains demonstrate that BUSL dramatically reduces the search space for clauses and attains a significantly higher accuracy than a structure learner that follows a top-down approach. Accurate and efficient structure learning can also be achieved by transferring a model obtained in a source domain related to the current target domain of interest. We view transfer as a revision task and present an algorithm that diagnoses a source MLN to determine which of its parts transfer directly to the target domain and which need to be updated. This analysis focuses the search for revisions on the incorrect portions of the source structure, thus speeding up learning. Transfer learning is particularly important when target-domain data is limited, such as when data on only a few individuals is available from domains with hundreds of entities connected by a variety of relations. We also address this challenging case and develop a general transfer learning approach that makes effective use of such limited target data in several social network domains. Finally, we develop an application of MLNs to the problem of Web query disambiguation in a more privacy-aware setting where the only information available about a user is that captured in a short search session of 5-6 previous queries on average. This setting contrasts with previous work that typically assumes the availability of long user-specific search histories. To compensate for the scarcity of user-specific information, our approach exploits the relations between users, search terms, and URLs. We demonstrate the effectiveness of our approach in the presence of noise and show that it outperforms several natural baselines on a large data set collected from the MSN search engine. / text

Page generated in 0.0956 seconds