• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ALGORITHMS FOR UPPER BOUNDS OF LOW DIMENSIONAL GROUP HOMOLOGY

Roberts, Joshua D. 01 January 2010 (has links)
A motivational problem for group homology is a conjecture of Quillen that states, as reformulated by Anton, that the second homology of the general linear group over R = Z[1/p; ζp], for p an odd prime, is isomorphic to the second homology of the group of units of R, where the homology calculations are over the field of order p. By considering the group extension spectral sequence applied to the short exact sequence 1 → SL2 → GL2 → GL1 → 1 we show that the calculation of the homology of SL2 gives information about this conjecture. We also present a series of algorithms that finds an upper bound on the second homology group of a finitely-presented group. In particular, given a finitely-presented group G, Hopf's formula expresses the second integral homology of G in terms of generators and relators; the algorithms exploit Hopf's formula to estimate H2(G; k), with coefficients in a finite field k. We conclude with sample calculations using the algorithms.

Page generated in 0.0813 seconds