• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluation of a multiplex polymerase chain reaction assay for detection of silent fluoroquinolone-resistant determining mutations instreptococcus pneumoniae

Cheung, Yin-mei., 張燕湄. January 2003 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
12

Determination of quinolones in bovine kidney using hollow-fiber supported liquid membrane extraction prior to liquid chromatography tandem mass spectrometry

Gaolape, Kefilwe Precious 10 1900 (has links)
Focus of this study was on the development of one of the faster, simpler, cost effective and environmentally friendly sample pre-treatment techniques which employs a supported liquid membrane, in this case a Hollow-fiber supported liquid membrane (HF-SLM) for determination of seven (7) quinolone antibiotics (enrofloxacin, ciprofloxacin, danofloxacin, difloxacin, norfloxacin, nalidixic acid and sarafloxacin) in bovine kidney samples followed by LC-MS/MS analysis. The key parameters of the method were optimized and the method was validated following the 2002/657 EC guidelines. The optimum HF-SLM conditions were therefore; NaH2PO4 as a donor phase at pH 7, 0.1% formic acid at pH 3 as acceptor phase. Triethylamine was the optimized liquid membrane and the stirring time was optimized at 1 hour. Separation of the 7 quinolones including 3 internal standards (enrofloxacin-d5, norfloxacin-d5 and difloxacin-d3) was carried out on a Phenomenex Kinetex 2.6 μm XB-C18, 100 mm x 4.6 mm, 100Å column. Validation parameters such as Correlation coefficients (r2) ranging from 0.9714-0.9975 were obtained, while limit of detection (LOD) ranged between 3-39 ug kg-1 and limit of quantification (LOQ) ranged between 10-130 ug kg-1. The obtained limits at which it can be concluded with an error probability of α = 95% that a sample is non-compliant (CCα) ranged from 28 – 422 ug kg-1 while CCβ; the smallest content of the substance that may be detected, identified or quantified in a sample with an error probability of β = 95%, ranged from 29 – 454 ug kg-1. The method was found to be reproducible with CVs ≤ 23 %. The tested samples from Botswana local abattoirs showed no presence of quinolone antibiotics when the method was applied to real bovine kidney samples. Hollow-fiber supported liquid membrane can therefore be used for extraction of biological samples since it is a “greener technique” which uses less solvent which are less harmful to the environment when disposed as compared to dispersive Solid Phase Extraction (dSPE). / Chemistry / M. Sc. (Chemistry)
13

Analyse du rôle des gènes chromosomiques tldD et tldE dans le système poison/antidote ccd et dans la maturation de la microcine B17

Allali, Nourredine January 2002 (has links)
Doctorat en Sciences / info:eu-repo/semantics/nonPublished
14

Detection and significance of plasmid-mediated quinolone resistance (qnr) genes in Enterobacteriaceae isolates from bacteraemic patients in Hong Kong.

January 2010 (has links)
Lee, Ching Ching. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 90-103). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of Contents --- p.vi / List of Tables --- p.x / List of Figures --- p.xi / Chapter Chapter 1 --- Introduction / Chapter 1.1. --- Quinolone Antimicrobial Agents --- p.1 / Chapter 1.1.1. --- Development --- p.1 / Chapter 1.1.2. --- Mode of action --- p.3 / Chapter 1.1.3. --- Mechanisms of resistance to quinolones --- p.4 / Chapter 1.1.3.1. --- Target genes mutations --- p.4 / Chapter 1.1.3.2. --- Decreased intracellular quinolone accumulation --- p.5 / Chapter 1.1.3.3. --- Plasmid-mediated quinolone resistance --- p.6 / Chapter 1.2. --- Plasmid-mediated Quinolone Resistance Genes (qnr) --- p.8 / Chapter 1.2.1. --- Discovery of qnrA genes --- p.8 / Chapter 1.2.2. --- Discovery of qnrS genes --- p.9 / Chapter 1.2.3. --- Discovery of qnrB genes --- p.10 / Chapter 1.2.4. --- Discovery of qnrC genes --- p.11 / Chapter 1.2.5. --- Discovery of qnrD genes --- p.12 / Chapter 1.2.6. --- Origins of qnr genes --- p.12 / Chapter 1.2.7. --- Qnr proteins and mode of action --- p.14 / Chapter 1.2.8. --- Epidemiology and quinolones resistance activity of qnr genes --- p.16 / Chapter 1.2.9. --- Epidemiology of fluoroquinolone-resistant Enterobacteriaceae --- p.17 / Chapter 1.2.10 --- Multidrug-resistant in extended-spectrum-B-lactamase- and AmpC-producing Enterobacteriaceae --- p.19 / Chapter 1.3. --- Background of Study --- p.20 / Chapter 1.4. --- Objectives of Study --- p.21 / Chapter Chapter 2 --- Materials & Methods / Chapter 2.1. --- Study Design --- p.22 / Chapter 2.2. --- Antimicrobial Susceptibility Testing --- p.24 / Chapter 2.2.1 --- Bacterial isolates --- p.24 / Chapter 2.2.2. --- Screening for ESBL and AmpC production by disk diffusion test --- p.24 / Chapter 2.2.3. --- Determination of minimal inhibitory concentrations (MICs) --- p.25 / Chapter 2.3. --- "Detection of qnrA, qnrB and qnrS Genes by Multiplex PCR" --- p.27 / Chapter 2.3.1. --- Total DNA preparation --- p.27 / Chapter 2.3.2. --- "Multiplex PCR assay for qnrA, qnrB and qnrS genes detection" --- p.27 / Chapter 2.3.3. --- Agarose gel electrophoresis --- p.29 / Chapter 2.4. --- "Detection of TEM-, SHV-, CTX- and PMAmpC Type B-Lactamase Genes by PCR" --- p.30 / Chapter 2.5. --- PCR Assays for Further Genotypic Characterization Purpose --- p.32 / Chapter 2.5.1. --- PCR assay to amplify qnrB genes --- p.32 / Chapter 2.5.2. --- PCR assay to amplify qnrS genes --- p.33 / Chapter 2.5.3. --- "PCR assays for genotypic characterizations of the co-existed blaTEM, blaSHV, blaCTX-M and PMAmpC genes of all qnr-positive isolates" --- p.33 / Chapter 2.5.3.1. --- Genotypic characterizations of the co-existed bla-TEM and genes --- p.33 / Chapter 2.5.3.2. --- PCR assays to amplify the co-existed blaCTX_M genes --- p.33 / Chapter 2.5.3.3. --- PCR assay to amplify the co-existed PMAmpC genes --- p.34 / Chapter 2.5.4. --- Sequencing reaction --- p.36 / Chapter 2.5.4.1. --- Purification of PCR product and sequence determination --- p.36 / Chapter 2.5.4.2. --- Sequence analysis --- p.37 / Chapter 2.6. --- Collection of Clinical Data --- p.38 / Chapter 2.6.1. --- Demographics and clinical data --- p.38 / Chapter 2.6.2. --- Definitions --- p.38 / Chapter 2.6.3. --- Data analysis --- p.40 / Chapter Chapter 3 --- Results / Chapter 3.1. --- Bacterial Isolates --- p.41 / Chapter 3.2. --- "Demographics, Medical History, Clinical Features and Clinical Outcomes of Patients" --- p.42 / Chapter 3.3. --- Antimicrobial Susceptibility Testing --- p.44 / Chapter 3.4. --- Detection of qnr Genes --- p.48 / Chapter 3.4.1. --- "Detection of qnrA, qnrB and qnrS genes by multiplex PCR" --- p.48 / Chapter 3.5. --- Detection of ESBLs --- p.49 / Chapter 3.5.1. --- Detection of TEM- and SHV-type ESBLs --- p.49 / Chapter 3.5.2. --- Detection of CTX-M- type ESBLs --- p.51 / Chapter 3.6. --- Detection of PMAmpC Genes --- p.52 / Chapter 3.6.1. --- Detection of PMAmpC genes --- p.52 / Chapter 3.7. --- "The Distribution of qnr and bla Genes for TEM, SHV, CTX-M and PMAmpC" --- p.53 / Chapter 3.8. --- The Characteristics of qnr Isolates --- p.54 / Chapter 3.8.1. --- Genotypes of qnrB and qnrS --- p.54 / Chapter 3.8.2. --- Antimicrobial susceptibility of qnr isolates --- p.58 / Chapter 3.9. --- "The Associations of qnr Genes with Other Bacterial Resistance Genotypes, and the Clinical Characteristics and Outcomes of Patients" --- p.62 / Chapter 3.9.1. --- "Univariate analysis of the associations of qnr genes with other bacterial resistance genotypes, and the clinical characteristics and outcomes of patients" --- p.62 / Chapter 3.9.2. --- "Multivariate analysis of the associations of qnr genes with other bacterial resistance genotypes, and the clinical characteristics and outcomes of patients" --- p.65 / Chapter 3.9.2.1. --- "Multivariate analysis of the associations of qnr genes with other bacterial resistance genotypes, and the clinical characteristics of patients" --- p.65 / Chapter 3.9.2.2. --- "Multivariate analysis of the associations of mortality with qnr genes, bacterial resistance genotypes and other clinical characteristics of patients" --- p.66 / Chapter Chapter 4 --- Discussion / Chapter 4.1. --- Prevalences and Susceptibility of ESBL and PMAmpC in Bacteraemic Enterobacteriaceae Isolates --- p.67 / Chapter 4.2. --- Epidemiology of Plasmid-mediated Quinolone Resistance (qnr) Genes --- p.69 / Chapter 4.3. --- Genotypes of qnr-positive Isolates --- p.72 / Chapter 4.4. --- Antimicrobial Susceptibility of qnr-positive Isolates --- p.75 / Chapter 4.5. --- "The Associations of qnr Genes with Other Bacterial Resistance Genotypes, and the Clinical Characteristics of Patients" --- p.79 / Chapter 4.6. --- "The Associations of Mortality with qnr Genes, Bacterial Resistance Genotypes and Other Clinical Characteristics of Patients" --- p.80 / Chapter 4.7. --- Clinical Importance and Clinical Implications of qnr Genes --- p.82 / Chapter 4.8. --- Limitations of the Current Study --- p.85 / Chapter 4.9. --- Future Studies --- p.87 / Chapter 4.10. --- Conclusions --- p.89 / References --- p.90

Page generated in 0.1038 seconds