• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistical and intelligent methods for default diagnosis and loacalization in a continuous tubular reactor / Méthodes statistiques et intelligentes pour la détection et la localisation de dysfonctionnements dans un réacteur chimique tubulaire continu

Liu, Haoran 26 November 2009 (has links)
Ce travail concerne l’étude d’un réacteur chimique continu afin de construire un modèle pour la phase d’apprentissage de méthode et localisation et détection de pannes. Un dispositif expérimental a été conçu pour disposer de données expérimentales significatives. Pour le diagnostique et la localisation des méthodes orientées données ont été retenues, principalement les réseaux Bayésiens et les réseaux de neurones à Fonctions Radiales de Base (RBF) couplés à un algorithme génétique auto adaptatif à ajustement local (GAAPA). Les données collectées à partir du dispositif expérimental ont servi à l’apprentissage et à la validation du modèle. / The aim is to study a continuous chemical process, and then analyze the hold process of the reactor and build the models which could be trained to realize the fault diagnosis and localization in the process. An experimental system has been built to be the research base. That includes experiment part and record system. To the diagnosis and localization methods, the work presented the methods with the data-based approach, mainly the Bayesian network and RBF network based on GAAPA (Genetic Algorithm with Auto-adapted of Partial Adjustment). The data collected from the experimental system are used to train and test the models.
2

Modélisation, observation et commande : une approche multimodèle

Elkhalil, Mansoura 19 March 2011 (has links) (PDF)
Cette thèse concerne la commande des systèmes dont la dynamique peut être convenablement décrite par une approche multimodèle à partir d'une étude d'affinement des performances d'un système de commande adaptative avec modèle de référence. Quatre approches de commande multimodèle ont été proposées. La première approche est basée sur la commande avec modèle de référence sur la sortie. Une validation expérimentale réussie a été effectuée sur un réacteur chimique. La seconde approche est basée sur la commande prédictive avec modèle de référence sur l'état partiel. Des résultats de simulation, obtenus à partir d'un modèle physique d'un bioréacteur, ont montré que les performances du système de commande multimodèle sont semblables à celles obtenues par un système de commande non linéaire appropriée du type backstepping. La troisième approche est consacrée à la compensation des perturbations harmoniques dans le cas où la dynamique du système peut être raisonnablement décrite par une famille de modèles linéaires invariants. La quatrième approche est basée sur une commande prédictive multimodèle avec modèle de référence sur l'état partiel issue d'une synthèse LMI.
3

Diagnostic de défauts par les Machines à Vecteurs Supports : application à différents systèmes mutivariables nonlinéaires

Laouti, Nassim 21 September 2012 (has links) (PDF)
Les systèmes réels sont généralement de nature non-linéaire, et leurs modélisations etsurveillance restent une tâche difficile à accomplir. Néanmoins, avec les progrès technologiqueson dispose maintenant d'un atout de taille sur ces systèmes qui est les données.Ce travail présente une technique de diagnostic de défaut et de modélisation basée en grandepartie sur la méthode d'apprentissage automatique " Les Machines à Vecteurs de Support,SVM " qui est basée sur les données. La méthodologie proposée est appliquée à différentessystèmes multivariables et non linéaires, à savoir : un procédé de traitement des eaux usées, unsystème éolien et un réacteur chimique parfaitement agité.L'objectif de cette thèse de doctorat est d'examiner la possibilité d'extraire le maximumd'information à partir de données afin de surveiller efficacement le comportement de systèmesréels et de détecter rapidement tout défaut qui peut compromettre leur bon fonctionnement. Lamême méthode est utilisée pour la modélisation des différents systèmes. Plusieurs défis ont étérelevés tels que la complexité du comportement des systèmes, le grand nombre de mesuresvariant à différentes échelles de temps, la présence de bruit et les perturbations. Une méthodegénérique de diagnostic de défauts est proposée par la génération des caractéristiques de chaquedéfaut suivie d'une étape d'évaluation de ces caractéristiques avec une amélioration du transfertde connaissances en modélisation.Dans cette thèse ont a démontré l'utilité de l'outil Machines à Vecteurs de Support, enclassification par la construction de modèles de décision SVM dédiés à l'évaluation descaractéristiques de défaut, et aussi en tant qu'estimateur non linéaire/ou pour la modélisation parl'utilisation des machines à vecteurs de support dédiés pour la régression (SVR).La combinaison de SVM et d'une méthode basée sur le modèle "observateur" a été aussi étudiéeet a été nécessaire dans certains cas pour garantir un bon diagnostic de défauts.
4

Diagnostic de défauts par les Machines à Vecteurs Supports : application à différents systèmes mutivariables nonlinéaires / Fault diagnosis using Support Vector Machines : application to different multivariable nonlinear systems

Laouti, Nassim 21 September 2012 (has links)
Les systèmes réels sont généralement de nature non-linéaire, et leurs modélisations etsurveillance restent une tâche difficile à accomplir. Néanmoins, avec les progrès technologiqueson dispose maintenant d'un atout de taille sur ces systèmes qui est les données.Ce travail présente une technique de diagnostic de défaut et de modélisation basée en grandepartie sur la méthode d'apprentissage automatique « Les Machines à Vecteurs de Support,SVM » qui est basée sur les données. La méthodologie proposée est appliquée à différentessystèmes multivariables et non linéaires, à savoir : un procédé de traitement des eaux usées, unsystème éolien et un réacteur chimique parfaitement agité.L'objectif de cette thèse de doctorat est d'examiner la possibilité d'extraire le maximumd'information à partir de données afin de surveiller efficacement le comportement de systèmesréels et de détecter rapidement tout défaut qui peut compromettre leur bon fonctionnement. Lamême méthode est utilisée pour la modélisation des différents systèmes. Plusieurs défis ont étérelevés tels que la complexité du comportement des systèmes, le grand nombre de mesuresvariant à différentes échelles de temps, la présence de bruit et les perturbations. Une méthodegénérique de diagnostic de défauts est proposée par la génération des caractéristiques de chaquedéfaut suivie d’une étape d'évaluation de ces caractéristiques avec une amélioration du transfertde connaissances en modélisation.Dans cette thèse ont a démontré l'utilité de l'outil Machines à Vecteurs de Support, enclassification par la construction de modèles de décision SVM dédiés à l'évaluation descaractéristiques de défaut, et aussi en tant qu'estimateur non linéaire/ou pour la modélisation parl'utilisation des machines à vecteurs de support dédiés pour la régression (SVR).La combinaison de SVM et d’une méthode basée sur le modèle "observateur" a été aussi étudiéeet a été nécessaire dans certains cas pour garantir un bon diagnostic de défauts. / Real systems are usually nonlinear and their modeling and monitoring remains adifficult task. However, with advances in technology and the availability of big amounts of data,we have a facility to operate these systems.This work presents a methodology for fault diagnosis and modeling which is in large part basedon the method of Support Vector Machines (SVM) which data-based. The proposedmethodology is applied to various nonlinear multivariable systems including: wastewatertreatment processes, wind turbines and stirred tank reactors.The objective of this PhD is to examine the possibility of extracting the maximum of informationfrom data to effectively monitor the behavior of real systems and rapidly detect any faults whichmay impair their proper functioning. The same method is used for modeling the differentsystems. Several challenges were identified and surmounted such as the complexity of thesystem behavior, large amount of data varying at different time scales, the presence of noise anddisturbances. A generic method of fault diagnosis is proposed for the generation of the faultcharacteristics followed by an evaluation of these characteristics as well as an improved transferof knowledge in modeling.In this thesis the usefulness of the tool Support Vector Machines in Classification has beendemonstrated by the construction of decision models dedicated to evaluating the characteristicsof faults, and also its usefulness for modeling/ or as estimator for the nonlinear systems usingsupport vector machines dedicated for regression (SVR).The combination of SVM and a method based on models “observer” was also considered andwas found to be interesting in some cases to ensure proper fault diagnosis.

Page generated in 0.0596 seconds