• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de la dynamique structurale du domaine de liaison au ligand de RXRα et implication de la phosphorylation dans la transcription / Structural dynamics of the ligand binding domain of RXRα and implication of phosphorylation in transcription

Eberhardt, Jérôme 12 December 2016 (has links)
De nombreuses études révèlent que le domaine de liaison au ligand de RXRα est très dynamique, même en présence d'un ligand agoniste. Nous avons utilisé les données expérimentales (HDX, RMN et X-ray) disponibles sur ce domaine pour mettre en place un protocole, basé sur la dynamique moléculaire accélérée, permettant d'explorer efficacement la dynamique conformationnelle du domaine de liaison au ligand de RXRα et de valider les ensembles conformationnels obtenus. Ce protocole a été appliqué pour analyser l'influence de la phosphorylation pSer260, située à proximité de la surface d'interaction avec les protéines coactivatrice et impliquée dans le développement de carcinomes hépatocellulaires, sur la structure de ce domaine et sa dynamique. Parallèlement, une méthode de réduction de la dimensionnalité a été développé afin d'analyser de longues trajectoires de dynamique moléculaire. Ainsi grâce à cette méthode, nous avons pu identifier plusieurs nouvelles conformations alternative stables du domaine de liaison au ligand de RXRα. / Many studies reveal that the ligand binding domain of RXRα is very dynamic, still even in a presence of an agonist ligand. Therefore, the availability of experimental data (HDX, NMR and X-ray) on the domain was used as a leverage in order to set up a protocol, based on accelerated molecular dynamics, to explore its conformational dynamic and to validate it. This protocol was applied to understand the influence of the pSer260 phosphorylation, closed to the binding surface of coactivator proteins and implied in the hepatocellular carcinoma growth, on its structure and its dynamic. At the same time, a dimensional reduction method was developed to analyse long molecular dynamic trajectories. Thus, with this approach, we identified a couple of new alternative and stable conformations of the ligand binding domain of RXRα.
2

Categorical structural optimization : methods and applications / Optimisation structurelle catégorique : méthodes et applications

Gao, Huanhuan 07 February 2019 (has links)
La thèse se concentre sur une recherche méthodologique sur l'optimisation structurelle catégorielle au moyen d'un apprentissage multiple. Dans cette thèse, les variables catégorielles non ordinales sont traitées comme des variables discrètes multidimensionnelles. Afin de réduire la dimensionnalité, les nombreuses techniques d'apprentissage sont introduites pour trouver la dimensionnalité intrinsèque et mapper l'espace de conception d'origine sur un espace d'ordre réduit. Les mécanismes des techniques d'apprentissage à la fois linéaires et non linéaires sont d'abord étudiés. Ensuite, des exemples numériques sont testés pour comparer les performances de nombreuses techniques d’apprentissage. Sur la base de la représentation d'ordre réduit obtenue par Isomap, les opérateurs de mutation et de croisement évolutifs basés sur les graphes sont proposés pour traiter des problèmes d'optimisation structurelle catégoriels, notamment la conception du dôme, du cadre rigide de six étages et des structures en forme de dame. Ensuite, la méthode de recherche continue consistant à déplacer des asymptotes est exécutée et fournit une solution compétitive, mais inadmissible, en quelques rares itérations. Ensuite, lors de la deuxième étape, une stratégie de recherche discrète est proposée pour rechercher de meilleures solutions basées sur la recherche de voisins. Afin de traiter le cas dans lequel les instances de conception catégorielles sont réparties sur plusieurs variétés, nous proposons une méthode d'apprentissage des variétés k-variétés basée sur l'analyse en composantes principales pondérées. / The thesis concentrates on a methodological research on categorical structural optimizationby means of manifold learning. The main difficulty of handling the categorical optimization problems lies in the description of the categorical variables: they are presented in a category and do not have any orders. Thus the treatment of the design space is a key issue. In this thesis, the non-ordinal categorical variables are treated as multi-dimensional discrete variables, thus the dimensionality of corresponding design space becomes high. In order to reduce the dimensionality, the manifold learning techniques are introduced to find the intrinsic dimensionality and map the original design space to a reduced-order space. The mechanisms of both linear and non-linear manifold learning techniques are firstly studied. Then numerical examples are tested to compare the performance of manifold learning techniques mentioned above. It is found that the PCA and MDS can only deal with linear or globally approximately linear cases. Isomap preserves the geodesic distances for non-linear manifold however, its time consuming is the most. LLE preserves the neighbour weights and can yield good results in a short time. KPCA works like a non-linear classifier and we proves why it cannot preserve distances or angles in some cases. Based on the reduced-order representation obtained by Isomap, the graph-based evolutionary crossover and mutation operators are proposed to deal with categorical structural optimization problems, including the design of dome, six-story rigid frame and dame-like structures. The results show that the proposed graph-based evolutionary approach constructed on the reduced-order space performs more efficiently than traditional methods including simplex approach or evolutionary approach without reduced-order space. In chapter 5, the LLE is applied to reduce the data dimensionality and a polynomial interpolation helps to construct the responding surface from lower dimensional representation to original data. Then the continuous search method of moving asymptotes is executed and yields a competitively good but inadmissible solution within only a few of iteration numbers. Then in the second stage, a discrete search strategy is proposed to find out better solutions based on a neighbour search. The ten-bar truss and dome structural design problems are tested to show the validity of the method. In the end, this method is compared to the Simulated Annealing algorithm and Covariance Matrix Adaptation Evolutionary Strategy, showing its better optimization efficiency. In chapter 6, in order to deal with the case in which the categorical design instances are distributed on several manifolds, we propose a k-manifolds learning method based on the Weighted Principal Component Analysis. And the obtained manifolds are integrated in the lower dimensional design space. Then the method introduced in chapter 4 is applied to solve the ten-bar truss, the dome and the dame-like structural design problems.

Page generated in 0.1478 seconds