• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient aspects of the polymer induced drag reduction phenomenon / Des aspects transitoires du phénomène de réduction de la traînée induite par des polymères

Soeiro Pereira, Anselmo 29 November 2016 (has links)
La dilution en faible concentration de chaînes polymériques longues dans un fluide newtonien peut réduire la traînée turbulente, phénomène nommé ici DR (drag reduction). Les polymères s’étirent et s’enroulent successivement, en interaction avec les structures turbulentes, imposant à DR un comportement transitoire. Il en résulte que la DR traverse trois stades. Lors du premier, la DR démarre à zéro et descend à des valeurs négatives en raison d’un étirement considérable du polymère au début du processus, ce qui exige de l’énergie de l’écoulement. Une fois atteint le niveau minimal de réduction de la traînée, les polymères commencent leur cycle d’étirement-enroulement et la DR augmente en réponse au développement de structures turbulentes, pour en arriver à une valeur maximale, menant au début du deuxième stade. Cependant, les polymères peuvent subir une dégradation mécanique à la suite d’un étirement polymérique intense. Lorsque la dégradation polymérique devient assez prononcée, la DR redescend pour atteindre une valeur finale qui indique que la dégradation s’est arrêtée. Le processus de dégradation polymérique caractérise le troisième stade. Dans le présent travail, ces trois stades sont examinés à l’aide de simulations numériques directes d’écoulements turbulents viscoélastiques FENE-P en géométries du type Poiseuille plan et Couette plan, sur un large éventail de nombres de Reynolds, de nombres de Weissenberg et d’extension maximale de la chaîne polymérique. Les deux premiers stades sont étudiés à partir des analyses tensorielle, énergétique et spectrale. Un nouveau modèle de dégradation polymérique est proposé afin de reproduire numériquement le stade final. / The addition of a small amount of polymers of high molecular weight can lead to a pressure drop decrease in turbulent flows. The polymers successively stretch and coil by interacting with the turbulent structures, which imposes a transient behaviour on the drag reduction (DR). As a result, DR undergoes three stages over time: A, B, and C. In stage A, DR departs from zero and assumes negative values due to a significant polymer stretching at the beginning of the process, which requires energy from the flow. After the minimum DR is reached, the polymers start their coil-stretch cycle and DR increases in response to the development of turbulent structures, achieving a maximum value, which makes for the beginning of stage B. However, during their coil-stretch cycle, polymers can be mechanically degraded as a result of an intense polymer stretching, which reduces their ability to act as energy exchange agents. Hence, when polymer degradation becomes pronounced, DR decreases until achieving a final value. The polymer degradation process characterizes the stage C. In the present work, numerical analyses are conducted aiming to investigate the stages A, B and C. The transient aspects of the polymer induced drag reduction phenomenon are explored with the aid of direct numerical simulations of turbulent plane Poiseulle and Couette flows of viscoelastic FENE-P fluids taking into account a large range of Reynolds number, Weissenberg number and maximum polymer molecule extensibility. Stages A and B are carefully studied from tensor, energy budget and spectral perspectives. A polymer scission model is developed in order to numerically reproduce the stage C.
2

Contrôle d'une couche limite turbulente au moyen d'un micro-sytème distribué / Flow control in a spatially-developing turbulent boundary layer with distributed actuators

Pamiès, Mathieu 09 October 2008 (has links)
Sur fond de crise pétrolière, il devient crucial pour les industries de transport, civiles ou militaires, de réduire la consommation de carburant de leurs véhicules. Aussi. la réduction de leur traînée de frottement laisse espérer des gains énergétiques substantiels. Notamment à l'origine de cette force, la contrainte pariétale dans les couches limites turbulentes résulte de phénomènes dynamiques complexes difficilement observables et peu prévisibles. Il s'agit de structures tourbillonnaires cohérentes. dont les tailles et temps caractéristiques sont encore difficilement atteignables dans les applications industrielles. Pour mieux prévoir les gains potentiels et en vue d'une future démonstration expérimentale. des simulations numériques de leur contrôle au moyen d'un micro système d'actionnement original sont présentées dans ce mémoire. L'accent a été mis sur le réalisme de la modélisation. Ces travaux ont d'abord permis un diagnostic des techniques de simulation des couches limites spatiales et ont abouti à une amélioration des conditions d'entrée turbulentes et au développement d'une méthode performante de génération synthétique de turbulence. Des stratégies de contrôle ont ensuite été proposées, qui permettent d'accroître la faisabilité pratique des mécanismes associés au contrôle en opposition, bien connus de la littérature. La mise en œuvre de cette dernière stratégie au moyen d'un microsystème distribué réaliste a finalement permis de caractériser ses performances réelles. Les mécanismes d'interaction entre turbulence et actionneur sont précisément décrits. L'identification de facteurs de rendement permet alors d'orienter les futurs travaux à ce sujet. / The rising cost of oil leads most of transportation firms to work towards reducing the fuel consumption of their vehicles. ln aeronautical applications, they mainly focus on viscous drag reduction. which gives hope to considerable power savings. The approach followed in the present work aims at manipulating the turbulent features responsible for the friction force. Located in the turbulent part of boundary layers. they consist in coherent vortices. whose characteristic time and space scales are costly to reach experimentally and numerically. This work postulates that only a high level of realism could help to predict accurately the performance of coherent vortices-based drag control methods. It is therefore taken into account at three stages of the design of our flow control simulation. which are the choice of the Reynolds number, the control algorithm and the actuating system. First of all, the simulation of high Reynolds number spatial boundary layers is often limited by computing capacities. Thanks to an optimization of existing inflow boundary conditions, current work helps to reduce CPU cost and widens the field of reachable flow conditions. Secondly, two improvements of the well-known oppositiol control have been proposed to allow its experimental adaptation. They are assessed using large-eddy simulation (LES) at a reasonable cost. Finally, a realistic MEMS is mode lied and used to manipulate the fine turbulent structures in the vicinity of the wall. Real influence on drag as well as precise interaction mechanisms are described using direct numerical simulation (DNS). Efficiency parameters are identified and possible ways of improvement are indicated.
3

Modal analysis and flow control for drag reduction on a Sport Utility Vehicle / Choix de méthode d'optimisation appliquée au contrôle d'écoulement en aérodynamique externe pour réduire les pertes aérodynamiques sur maquette de véhicule type SUV

Edwige, Stéphie 14 March 2019 (has links)
L’industrie automobile fournie de plus en plus d’effort pour optimiser l’aérodynamique externe des véhicules afin de réduire son empreinte écologique. Dans ce cadre, l’objectif de ce projet est d’examiner les structures tourbillonnaires responsables de la dégradation de traînée et de proposer une solution de contrôle actif permettant d’améliorer l’efficacité aérodynamique d’un véhicule SUV. Après une étude expérimentale de la maquette POSUV échelle réduite, une analyse modale croisée permet d’identifier les structures périodiques corrélées de l’écoulement qui pilotent la dépression sur le hayon. Une solution de contrôle optimale par jets pulsés sur le parechoc arrière, est obtenue avec un algorithme génétique. Celle-ci permet de réduire la dépression du hayon de 20% et l’analyse croisée des résultats instationnaires avec contrôle montre un changement significatif de la distribution spectrale. Après deux études préliminaires sur la rampe inclinée à 25° et sur le Corps d’Ahmed à 47°, la simulation de POSUV à partir d’un solveur LES, en éléments finis, est validé par rapport aux résultats expérimentaux. L’approfondissement des résultats 3D permet de comprendre les pertes aérodynamiques. La simulation de l’écoulement contrôlé permet également d’identifier les mécanismes du contrôle d’écoulements. / The automotive industry dedicates a lot of effort to improve the aerodynamical performances of road vehicles in order to reduce its carbon footprint. In this context, the target of the present work is to analyze the origin of aerodynamic losses on a reduced scale generic Sport Utility Vehicle and to achieve a drag reduction using an active flow control strategy. After an experimental characterization of the flow past the POSUV, a cross-modal DMD analysis is used to identify the correlated periodical features responsible for the tailgate pressure loss. Thanks to a genetic algorithm procedure, 20% gain on the tailgate pressure is obtained with optimal pulsed blowing jets on the rear bumper. The same cross-modal methodology allows to improve our understanding of the actuation mechanism. After a preliminary study of the 25° inclined ramp and of the Ahmed Body computations, the numerical simulation of the POSUV is corroborated with experiments using the cross-modal method. Deeper investigations on the three-dimensional flow characteristics explain more accurately the wake flow behavior. Finally, the controlled flow simulations propose additional insights on the actuation mechanisms allowing to reduce the aerodynamic losses.

Page generated in 0.0929 seconds