• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation bayésienne avec des splines du comportement moyen d'un échantillon de courbes

Merleau, James 08 1900 (has links)
Cette thèse porte sur l'analyse bayésienne de données fonctionnelles dans un contexte hydrologique. L'objectif principal est de modéliser des données d'écoulements d'eau d'une manière parcimonieuse tout en reproduisant adéquatement les caractéristiques statistiques de celles-ci. L'analyse de données fonctionnelles nous amène à considérer les séries chronologiques d'écoulements d'eau comme des fonctions à modéliser avec une méthode non paramétrique. Dans un premier temps, les fonctions sont rendues plus homogènes en les synchronisant. Ensuite, disposant d'un échantillon de courbes homogènes, nous procédons à la modélisation de leurs caractéristiques statistiques en faisant appel aux splines de régression bayésiennes dans un cadre probabiliste assez général. Plus spécifiquement, nous étudions une famille de distributions continues, qui inclut celles de la famille exponentielle, de laquelle les observations peuvent provenir. De plus, afin d'avoir un outil de modélisation non paramétrique flexible, nous traitons les noeuds intérieurs, qui définissent les éléments de la base des splines de régression, comme des quantités aléatoires. Nous utilisons alors le MCMC avec sauts réversibles afin d'explorer la distribution a posteriori des noeuds intérieurs. Afin de simplifier cette procédure dans notre contexte général de modélisation, nous considérons des approximations de la distribution marginale des observations, nommément une approximation basée sur le critère d'information de Schwarz et une autre qui fait appel à l'approximation de Laplace. En plus de modéliser la tendance centrale d'un échantillon de courbes, nous proposons aussi une méthodologie pour modéliser simultanément la tendance centrale et la dispersion de ces courbes, et ce dans notre cadre probabiliste général. Finalement, puisque nous étudions une diversité de distributions statistiques au niveau des observations, nous mettons de l'avant une approche afin de déterminer les distributions les plus adéquates pour un échantillon de courbes donné. / This thesis is about Bayesian functional data analysis in hydrology. The main objective is to model water flow data in a parsimonious fashion while still reproducing the statistical features of the data. Functional data analysis leads us to consider the water flow time series as functions to be modelled with a nonparametric method. First, the functions are registered in order to make them more homogeneous. With a more homogeneous sample of curves, we proceed to model their statistical features by relying on Bayesian regression splines in a fairly broad probabilistic framework. More specifically, we study a family of continuous distributions, which include those of the exponential family, from which the data might have arisen. Furthermore, to have a flexible nonparametric modeling tool, we treat the interior knots, which define the basis elements of the regression splines, as random quantities. We then use MCMC with reversible jumps in order to explore the posterior distribution of the interior knots. In order to simplify the procedure in our general modeling context, we consider some approximations for the marginal distribution of the observations, namely one based on the Schwarz information criterion and another which relies on Laplace's approximation. In addition to modeling the central tendency of a sample of curves, we also propose a methodology to simultaneously model the central tendency and the dispersion of the curves in our general probabilistic framework. Finally, since we study several statistical distributions for the observations, we put forward an approach to determine the most adequate distributions for a given sample of curves.
2

Régression bayésienne sous contraintes de régularité et de forme. / Bayesian regression under shape and smoothness restriction.

Khadraoui, Khader 08 December 2011 (has links)
Nous étudions la régression bayésienne sous contraintes de régularité et de forme. Pour cela,on considère une base de B-spline pour obtenir une courbe lisse et nous démontrons que la forme d'une spline engendrée par une base de B-spline est contrôlée par un ensemble de points de contrôle qui ne sont pas situés sur la courbe de la spline. On propose différents types de contraintes de forme (monotonie, unimodalité, convexité, etc). Ces contraintes sont prises en compte grâce à la loi a priori. L'inférence bayésienne a permis de dériver la distribution posteriori sous forme explicite à une constante près. En utilisant un algorithme hybride de type Metropolis-Hastings avec une étape de Gibbs, on propose des simulations suivant la distribution a posteriori tronquée. Nous estimons la fonction de régression par le mode a posteriori. Un algorithme de type recuit simulé a permis de calculer le mode a posteriori. La convergence des algorithmes de simulations et du calcul de l'estimateur est prouvée. En particulier, quand les noeuds des B-splines sont variables, l'analyse bayésienne de la régression sous contrainte devient complexe. On propose des schémas de simulations originaux permettant de générer suivant la loi a posteriori lorsque la densité tronquée des coefficients de régression prend des dimensions variables. / We investigate the Bayesian regression under shape and smoothness constraints. We first elicita Bayesian method for regression under shape restrictions and smoothness conditions. Theregression function is built from B-spline basis that controls its regularity. Then we show thatits shape can be controlled simply from its coefficients in the B-spline basis. This is achievedthrough the control polygon whose definition and some properties are given in this article.The regression function is estimated by the posterior mode. This mode is calculated by asimulated annealing algorithm which allows to take into account the constraints of form inthe proposal distribution. A credible interval is obtained from simulations using Metropolis-Hastings algorithm with the same proposal distribution as the simulated annealing algorithm.The convergence of algorithms for simulations and calculation of the estimator is proved. Inparticular, in the case of Bayesian regression under constraints and with free knots, Bayesiananalysis becomes complex. we propose original simulation schemes which allows to simulatefrom the truncated posterior distribution with free dimension.

Page generated in 0.18 seconds