• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesurer la masse de trous noirs supermassifs à l’aide de l’apprentissage automatique

Chemaly, David 07 1900 (has links)
Des percées récentes ont été faites dans l’étude des trous noirs supermassifs (SMBH), grâce en grande partie à l’équipe du télescope de l’horizon des évènements (EHT). Cependant, déterminer la masse de ces entités colossales à des décalages vers le rouge élevés reste un défi de taille pour les astronomes. Il existe diverses méthodes directes et indirectes pour mesurer la masse de SMBHs. La méthode directe la plus précise consiste à résoudre la cinématique du gaz moléculaire, un traceur froid, dans la sphère d’influence (SOI) du SMBH. La SOI est définie comme la région où le potentiel gravitationnel du SMBH domine sur celui de la galaxie hôte. Par contre, puisque la masse d’un SMBH est négligeable face à la masse d’une galaxie, la SOI est, d’un point de vue astronomique, très petite, typiquement de quelques dizaines de parsecs. Par conséquent, il faut une très haute résolution spatiale pour étudier la SOI d’un SMBH et pouvoir adéquatement mesurer sa masse. C’est cette nécessité d’une haute résolution spatiale qui limite la mesure de masse de SMBHs à de plus grandes distances. Pour briser cette barrière, il nous faut donc trouver une manière d’améliorer la résolution spatiale d’objets observés à un plus au décalage vers le rouge. Le phénomène des lentilles gravitationnelles fortes survient lorsqu’une source lumineuse en arrière-plan se trouve alignée avec un objet massif en avant-plan, le long de la ligne de visée d’un observateur. Cette disposition a pour conséquence de distordre l’image observée de la source en arrière-plan. Puisque cette distorsion est inconnue et non-linéaire, l’analyse de la source devient nettement plus complexe. Cependant, ce phénomène a également pour effet d’étirer, d’agrandir et d’amplifier l’image de la source, permettant ainsi de reconstituer la source avec une résolution spatiale considérablement améliorée, compte tenu de sa distance initiale par rapport à l’observateur. L’objectif de ce projet consiste à développer une chaîne de simulations visant à étudier la faisabilité de la mesure de la masse d’un trou noir supermassif (SMBH) par cinéma- tique du gaz moléculaire à un décalage vers le rouge plus élevé, en utilisant l’apprentissage automatique pour tirer parti du grossissement généré par la distorsion d’une forte lentille gravitationnelle. Pour ce faire, nous générons de manière réaliste des observations du gaz moléculaire obtenues par le Grand Réseau d’Antennes Millimétrique/Submillimétrique de l’Atacama (ALMA). Ces données sont produites à partir de la suite de simulations hydrody- namiques Rétroaction dans des Environnements Réalistes (FIRE). Dans chaque simulation, l’effet cinématique du SMBH est intégré, en supposant le gaz moléculaire virialisé. Ensuite, le flux d’émission du gaz moléculaire est calculé en fonction de sa vitesse, température, densité, fraction de H2, décalage vers le rouge et taille dans le ciel. Le cube ALMA est généré en tenant compte de la résolution spatiale et spectrale, qui dépendent du nombre d’antennes, de leur configuration et du temps d’exposition. Finalement, l’effet de la forte lentille gravi- tationnelle est introduit par la rétro-propagation du faisceau lumineux en fonction du profil de masse de l’ellipsoïde isotherme singulière (SIE). L’exploitation de ces données ALMA simulées est testée dans le cadre d’un problème de régression directe. Nous entraînons un réseau de neurones à convolution (CNN) à apprendre à prédire la masse d’un SMBH à partir des données simulées, sans prendre en compte l’effet de la lentille. Le réseau prédit la masse du SMBH ainsi que son incertitude, en supposant une distribution a posteriori gaussienne. Les résultats sont convaincants : plus la masse du SMBH est grande, plus la prédiction du réseau est précise et exacte. Tout comme avec les méthodes conventionnelles, le réseau est uniquement capable de prédire la masse du SMBH tant que la résolution spatiale des données permet de résoudre la SOI. De plus, les cartes de saillance du réseau confirment que celui-ci utilise l’information contenue dans la SOI pour prédire la masse du SMBH. Dans les travaux à venir, l’effet des lentilles gravitationnelles fortes sera introduit dans les données pour évaluer s’il devient possible de mesurer la masse de ces mêmes SMBHs, mais à un décalage vers le rouge plus élevé. / Recent breakthroughs have been made in the study of supermassive black holes (SMBHs), thanks largely to the Event Horizon Telescope (EHT) team. However, determining the mass of these colossal entities at high redshifts remains a major challenge for astronomers. There are various direct and indirect methods for measuring the mass of SMBHs. The most accurate direct method involves resolving the kinematics of the molecular gas, a cold tracer, in the SMBH’s sphere of influence (SOI). The SOI is defined as the region where the gravitational potential of the SMBH dominates that of the host galaxy. However, since the mass of a SMBH is negligible compared to the mass of a galaxy, the SOI is, from an astronomical point of view, very small, typically a few tens of parsecs. As a result, very high spatial resolution is required to study the SOI of a SMBH and adequately measure its mass. It is this need for high spatial resolution that limits mass measurements of SMBHs at larger distances. To break this barrier, we need to find a way to improve the spatial resolution of objects observed at higher redshifts. The phenomenon of strong gravitational lensing occurs when a light source in the back- ground is aligned with a massive object in the foreground, along an observer’s line of sight. This arrangement distorts the observed image of the background source. Since this distor- tion is unknown and non-linear, analysis of the source becomes considerably more complex. However, this phenomenon also has the effect of stretching, enlarging and amplifying the image of the source, enabling the source to be reconstructed with considerably improved spatial resolution, given its initial distance from the observer. The aim of this project is to develop a chain of simulations to study the feasibility of measuring the mass of a supermassive black hole (SMBH) by kinematics of molecular gas at higher redshift, using machine learning to take advantage of the magnification generated by the distortion of a strong gravitational lens. To this end, we realistically generate observations of molecular gas obtained by the Atacama Large Millimeter/Submillimeter Antenna Array (ALMA). These data are generated from the Feedback in Realistic Environments (FIRE) suite of hydrodynamic simulations. In each simulation, the kinematic effect of the SMBH is integrated, assuming virialized molecular gas. Next, the emission flux of the molecular gas is calculated as a function of its velocity, temperature, density, H2 fraction, redshift and sky size. The ALMA cube is generated taking into account spatial and spectral resolution, which depend on the number of antennas, their configuration and exposure time. Finally, the effect of strong gravitational lensing is introduced by back-propagating the light beam according to the mass profile of the singular isothermal ellipsoid (SIE). The exploitation of these simulated ALMA data is tested in a direct regression problem. We train a convolution neural network (CNN) to learn to predict the mass of an SMBH from the simulated data, without taking into account the effect of the lens. The network predicts the mass of the SMBH as well as its uncertainty, assuming a Gaussian a posteriori distribution. The results are convincing: the greater the mass of the SMBH, the more precise and accurate the network’s prediction. As with conventional methods, the network is only able to predict the mass of the SMBH as long as the spatial resolution of the data allows the SOI to be resolved. Furthermore, the network’s saliency maps confirm that it uses the information contained in the SOI to predict the mass of the SMBH. In future work, the effect of strong gravitational lensing will be introduced into the data to assess whether it becomes possible to measure the mass of these same SMBHs, but at a higher redshift.

Page generated in 0.0804 seconds