Spelling suggestions: "subject:"réseaux anioniques"" "subject:"réseaux cationiques""
1 |
Analyse pire cas de flux hétérogènes dans un réseau embarqué avion / Heterogeneous flows worst case analysis in avionics embedded networksBauer, Henri 04 October 2011 (has links)
La certification des réseaux avioniques requiert une maîtrise des délais de transmission des données. Cepednant, le multiplexage et le partage des ressource de communications dans des réseaux tels que l'AFDX (Avionics Full Duplex Switched Ethernet) rendent difficile le calcul d'un délai de bout en bout pire cas pour chaque flux. Des outils comme le calcul réseau fournissent une borne supérieure (pessimiste) de ce délai pire cas. Les besoins de communication des avions civils modernes ne cessent d'augmenter et un nombre croissant de flux aux contraintes et aux caractéristiques différentes doivent partager les ressources existantes. Le réseau AFDX actuel ne permet pas de différentier plusieurs classes de trafic : les messages sont traités dans les files des commutateurs selon leur ordre d'arrivée (politique de service FIFO). L'objet de cette thèse est de montrer qu'il est possible de calculer des bornes pire cas des délais de bout en bout avec des politiques de service plus évoluées, à base de priorités statiques (Priority Queueing) ou à répartition équitable de service (Fair Queueing). Nous montrons comment l'approche par trajectoires, issue de la théorie de l'ordonnancement dans des systèmes asynchrones distribués peut s'appliquer au domaine de l'AFDX actuel et futur (intégration de politiques de service plus évoluées permettant la différentiation de flux). Nous comparons les performances de cette approche avec les outils de référence lorsque cela est possible et étudions le pessimisme des bornes ainsi obtenues. / The certification process for avionics network requires guaranties on data transmission delays. However, calculating the worst case delay can be complex in the case of industrial AFDX (Avionics Full Duplex Switched Ethernet) networks. Tools such as Network Calculus provide a pessimistic upper bound of this worst case delay. Communication needs of modern commercial aircraft are expanding and a growing number of flows with various constraints and characteristics must share already existing resources. Currently deployed AFDX networks do not differentiate multiple classes of traffic: messages are processed in their arrival order in the output ports of the switches (FIFO servicing policy). The purpose of this thesis is to show that it is possible to provide upper bounds of end to end transmission delays in networks that implement more advanced servicing policies, based on static priorities (Priority Queuing) or on fairness (Fair Queuing). We show how the trajectory approach, based on scheduling theory in asynchronous distributed systems can be applied to current and future AFDX networks (supporting advanced servicing policies with flow differentiation capabilities). We compare the performance of this approach with the reference tools whenever it is possible and we study the pessimism of the computed upper bounds.
|
2 |
Analyse de sécurité et QoS dans les réseaux à contraintes temporelles / Analysis of security and QoS in networks with time constraintsMostafa, Mahmoud 10 November 2011 (has links)
Dans le domaine des réseaux, deux précieux objectifs doivent être atteints, à savoir la QoS et la sécurité, plus particulièrement lorsqu’il s’agit des réseaux à caractère critique et à fortes contraintes temporelles. Malheureusement, un conflit existe : tandis que la QoS œuvre à réduire les temps de traitement, les mécanismes de sécurité quant à eux requièrent d’importants temps de traitement et causent, par conséquent, des délais et dégradent la QoS. Par ailleurs, les systèmes temps réel, la QoS et la sécurité ont très souvent été étudiés séparément, par des communautés différentes. Dans le contexte des réseaux avioniques de données, de nombreux domaines et applications, de criticités différentes, échangent mutuellement des informations, souvent à travers des passerelles. Il apparaît clairement que ces informations présentent différents niveaux de sensibilité en termes de sécurité et de QoS. Tenant compte de cela, le but de cette thèse est d’accroître la robustesse des futures générations de réseaux avioniques de données en contrant les menaces de sécurité et évitant les ruptures de trafic de données. A cet effet, nous avons réalisé un état de l’art des mécanismes de sécurité, de la QoS et des applications à contraintes temporelles. Nous avons, ensuite étudié la nouvelle génération des réseaux avioniques de données. Chose qui nous a permis de déterminer correctement les différentes menaces de sécurité. Sur la base de cette étude, nous avons identifié à la fois les exigences de sécurité et de QoS de cette nouvelle génération de réseaux avioniques. Afin de les satisfaire, nous avons proposé une architecture de passerelle de sécurité tenant compte de la QoS pour protéger ces réseaux avioniques et assurer une haute disponibilité en faveur des données critiques. Pour assurer l’intégration des différentes composantes de la passerelle, nous avons développé une table de session intégrée permettant de stocker toutes les informations nécessaires relatives aux sessions et d’accélérer les traitements appliqués aux paquets (filtrage à états, les traductions d’adresses NAT, la classification QoS et le routage). Cela a donc nécessité, en premier lieu, l'étude de la structure existante de la table de session puis, en second lieu, la proposition d'une toute nouvelle structure répondant à nos objectifs. Aussi, avons-nous présenté un algorithme permettant l’accès et l’exploitation de la nouvelle table de session intégrée. En ce qui concerne le composant VPN IPSec, nous avons détecté que le trafic chiffré par le protocole ESP d’IPSec ne peut pas être classé correctement par les routeurs de bordure. Afin de surmonter ce problème, nous avons développé un protocole, Q-ESP, permettant la classification des trafics chiffrés et offrant les services de sécurité fournis par les protocoles AH et ESP combinés. Plusieurs techniques de gestion de bande passante ont été développées en vue d’optimiser la gestion du trafic réseau. Pour évaluer les performances offertes par ces techniques et identifier laquelle serait la plus appropriée dans notre cas, nous avons effectué une comparaison basée sur le critère du délai, par le biais de tests expérimentaux. En dernière étape, nous avons évalué et comparé les performances de la passerelle de sécurité que nous proposons par rapport à trois produits commerciaux offrant les fonctions de passerelle de sécurité logicielle en vue de déterminer les points forts et faibles de notre implémentation pour la développer ultérieurement. Le manuscrit s’organise en deux parties : la première est rédigée en français et représente un résumé détaillé de la deuxième partie qui est, quant à elle, rédigée en anglais. / QoS and security are two precious objectives for network systems to attain, especially for critical networks with temporal constraints. Unfortunately, they often conflict; while QoS tries to minimize the processing delay, strong security protection requires more processing time and causes traffic delay and QoS degradation. Moreover, real-time systems, QoS and security have often been studied separately and by different communities. In the context of the avionic data network various domains and heterogeneous applications with different levels of criticality cooperate for the mutual exchange of information, often through gateways. It is clear that this information has different levels of sensitivity in terms of security and QoS constraints. Given this context, the major goal of this thesis is then to increase the robustness of the next generation e-enabled avionic data network with respect to security threats and ruptures in traffic characteristics. From this perspective, we surveyed the literature to establish state of the art network security, QoS and applications with time constraints. Then, we studied the next generation e-enabled avionic data network. This allowed us to draw a map of the field, and to understand security threats. Based on this study we identified both security and QoS requirements of the next generation e-enabled avionic data network. In order to satisfy these requirements we proposed the architecture of QoS capable integrated security gateway to protect the next generation e-enabled avionic data network and ensure the availability of critical traffic. To provide for a true integration between the different gateway components we built an integrated session table to store all the needed session information and to speed up the packet processing (firewall stateful inspection, NAT mapping, QoS classification and routing). This necessitates the study of the existing session table structure and the proposition of a new structure to fulfill our objective. Also, we present the necessary processing algorithms to access the new integrated session table. In IPSec VPN component we identified the problem that IPSec ESP encrypted traffic cannot be classified appropriately by QoS edge routers. To overcome this problem, we developed a Q-ESP protocol which allows the classifications of encrypted traffic and combines the security services provided by IPSec ESP and AH. To manage the network traffic wisely, a variety of bandwidth management techniques have been developed. To assess their performance and identify which bandwidth management technique is the most suitable given our context we performed a delay-based comparison using experimental tests. In the final stage, we benchmarked our implemented security gateway against three commercially available software gateways. The goal of this benchmark test is to evaluate performance and identify problems for future research work. This dissertation is divided into two parts: in French and in English respectively. Both parts follow the same structure where the first is an extended summary of the second.
|
3 |
Analyse et optimisation des réseaux avioniques hétérogènes / Analysis and optimiozation of heterogeneous avionics networksAyed, Hamdi 27 November 2014 (has links)
La complexité des architectures de communication avioniques ne cesse de croître avec l’augmentation du nombre des terminaux interconnectés et l’expansion de la quantité des données échangées. Afin de répondre aux besoins émergents en terme de bande passante, latence et modularité, l’architecture de communication avionique actuelle consiste à utiliser le réseau AFDX (Avionics Full DupleX Switched Ethernet) pour connecter les calculateurs et utiliser des bus d’entrée/sortie (par exemple le bus CAN (Controller Area Network)) pour connecter les capteurs et les actionneurs. Les réseaux ainsi formés sont connectés en utilisant des équipements d’interconnexion spécifiques, appelés RDC (Remote Data Concentrators) et standardisé sous la norme ARINC655. Les RDCs sont des passerelles de communication modulaires qui sont reparties dans l’avion afin de gérer l’hétérogénéité entre le réseau cœur AFDX et les bus d’entrée/sortie. Certes, les RDCs permettent d’améliorer la modularité du système avionique et de réduire le coût de sa maintenance; mais, ces équipements sont devenus un des défis majeurs durant la conception de l’architecture avionique afin de garantir les performances requises du système. Les implémentations existantes du RDC effectuent souvent une translation direct des trames et n’implémentent aucun mécanisme de gestion de ressources. Or, une utilisation efficace des ressources est un besoin important dans le contexte avionique afin de faciliter l’évolution du système et l’ajout de nouvelles fonctions. Ainsi, l’objectif de cette thèse est la conception et la validation d’un RDC optimisé implémentant des mécanismes de gestion des ressources afin d’améliorer les performances de l’architecture de communication avionique tout en respectant les contraintes temporelles du système. Afin d’atteindre cet objectif, un RDC pour les architectures réseaux de type CAN-AFDX est conçu, intégrant les fonctions suivantes: (i) groupement des trames appliqué aux flux montants, i.e., flux générés par les capteurs et destinés à l’AFDX, pour minimiser le coût des communication sur l’AFDX; (ii) la régulation des flux descendants, i.e., flux générés par des terminaux AFDX et destinés aux actionneurs, pour réduire les contentions sur le bus CAN. Par ailleurs, notre RDC permet de connecter plusieurs bus CAN à la fois tout en garantissant une isolation entre les flux. Par la suite, afin d’analyser l’impact de ce nouveau RDC sur les performances du système avionique, nous procédons à la modélisation de l’architecture CAN-AFDX, et particulièrement le RDC et ses nouvelles fonctions. Ensuite, nous introduisons une méthode d’analyse temporelle pour calculer des bornes maximales sur les délais de bout en bout et vérifier le respect des contraintes temps-réel. Plusieurs configurations du RDC peuvent répondre aux exigences du système avionique tout en offrant des économies de ressources. Nous procédons donc au paramétrage du RDC afin de minimiser la consommation de bande passante sur l’AFDX tout en respectant les contraintes temporelles. Ce problème d’optimisation est considéré comme NP-complet, et l’introduction des heuristiques adéquates s’est avérée nécessaire afin de trouver la meilleure configuration possible du RDC. Enfin, les performances de ce nouveau RDC sont validées à travers une architecture CAN-AFDX réaliste, avec plusieurs bus CAN et des centaines de flux échangés. Différents niveaux d’utilisation des bus CAN ont été considérés et les résultats obtenus ont montré l’efficacité de notre RDC à améliorer la gestion des ressources du système avionique tout en respectant les contraintes temporelles de communication. En particulier, notre RDC offre une réduction de la bande passante AFDX allant jusqu’à 40% en comparaison avec le RDC actuellement utilisé. / The aim of my thesis is to provide a resources-efficient gateway to connect Input/Output (I/O) CAN buses to a backbone network based on AFDX technology, in modern avionics communication architectures. Currently, the Remote Data Concentrator (RDC) is the main standard for gateways in avionics; and the existing implementations do not integrate any resource management mechanism. To handle these limitations, we design an enhanced CAN-AFDX RDC integrating new functions: (i) Frame Packing (FP) allowing to reduce communication overheads with reference to the currently used "1 to 1" frame conversion strategy; (ii) Hierarchical Traffic Shaping (HTS) to reduce contention on the CAN bus. Furthermore, our proposed RDC allows the connection of multiple I/O CAN buses to AFDX while guaranteeing isolation between different criticality levels, using a software partitioning mechanism. To analyze the performance guarantees offered by our proposed RDC, we considered two metrics: the end-to-end latency and the induced AFDX bandwidth consumption. Furthermore, an optimization process was proposed to achieve an optimal configuration of our proposed RDC, i.e., minimizing the bandwidth utilization while meeting the real-time constraints of communication. Finally, the capacity of our proposed RDC to meet the emerging avionics requirements has been validated through a realistic avionics case study.
|
4 |
Risk assessment and intrusion detection for airbone networks / Analyse de risque et détection d'intrusions pour les réseaux avioniquesGil Casals, Silvia 21 July 2014 (has links)
L'aéronautique connaît de nos jours une confluence d'événements: la connectivité bord-sol et au seinmême de l’avion ne cesse d'augmenter afin, entre autres, de faciliter le contrôle du trafic aérien et lamaintenabilité des flottes d’avions, offrir de nouveaux services pour les passagers tout en réduisant lescoûts. Les fonctions avioniques se voient donc reliées à ce qu’on appelle le Monde Ouvert, c’est-à-direle réseau non critique de l’avion ainsi qu’aux services de contrôle aérien au sol. Ces récentesévolutions pourraient constituer une porte ouverte pour les cyber-attaques dont la complexité necesse de croître également. Cependant, même si les standards de sécurité aéronautique sont encoreen cours d'écriture, les autorités de certification aéronautiques demandent déjà aux avionneursd'identifier les risques et assurer que l'avion pourra opérer de façon sûre même en cas d'attaque.Pour répondre à cette problématique industrielle, cette thèse propose une méthode simple d'analysede risque semi-quantitative pour identifier les menaces, les biens à protéger, les vulnérabilités etclasser les différents niveaux de risque selon leur impact sur la sûreté de vol et de la potentiellevraisemblance de l’attaque en utilisant une série de tables de critères d’évaluation ajustables. Ensuite,afin d'assurer que l'avion opère de façon sûre et en sécurité tout au long de son cycle de vie, notredeuxième contribution consiste en une fonction générique et autonome d'audit du réseau pour ladétection d'intrusions basée sur des techniques de Machine Learning. Différentes options sontproposées afin de constituer les briques de cette fonction d’audit, notamment : deux façons demodéliser le trafic au travers d’attributs descriptifs de ses caractéristiques, deux techniques deMachine Learning pour la détection d’anomalies : l’une supervisée basée sur l’algorithme One ClassSupport Vector Machine et qui donc requiert une phase d’apprentissage, et l’autre, non superviséebasée sur le clustering de sous-espace. Puisque le problème récurrent pour les techniques dedétection d’anomalies est la présence de fausses alertes, nous prônons l’utilisation du Local OutlierFactor (un indicateur de densité) afin d’établir un seuil pour distinguer les anomalies réelles desfausses alertes. / Aeronautics is actually facing a confluence of events: connectivity of aircraft is graduallyincreasing in order to ease the air traffic management and aircraft fleet maintainability, andto offer new services to passengers while reducing costs. The core avionics functions are thuslinked to what we call the Open World, i.e. the non-critical network of an aircraft as well asthe air traffic services on the ground. Such recent evolutions could be an open door to cyberattacksas their complexity keeps growing. However, even if security standards are still underconstruction, aeronautical certification authorities already require that aircraft manufacturersidentify risks and ensure aircraft will remain in a safe and secure state even under threatconditions.To answer this industrial problematic, this thesis first proposes a simple semi-quantitative riskassessment framework to identify threats, assets and vulnerabilities, and then rank risk levelsaccording to threat scenario safety impact on the aircraft and their potential likelihood byusing adjustable attribute tables. Then, in order to ensure the aircraft performs securely andsafely all along its life-cycle, our second contribution consists in a generic and autonomousnetwork monitoring function for intrusion detection based on Machine Learning algorithms.Different building block options to compose this monitoring function are proposed such as:two ways of modeling the network traffic through characteristic attributes, two MachineLearning techniques for anomaly detection: a supervised one based on the One Class SupportVector Machine algorithm requiring a prior training phase and an unsupervised one based onsub-space clustering. Since a very common issue in anomaly detection techniques is thepresence of false alarms, we prone the use of the Local Outlier Factor (a density indicator) toset a threshold in order to distinguish real anomalies from false positives.This thesis summarizes the work performed under the CIFRE (Convention Industrielle deFormation par la Recherche) fellowship between THALES Avionics and the CNRS-LAAS atToulouse, France.
|
Page generated in 0.056 seconds