• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approches de routage adaptatif pour l'optimisation de la consommation énergétique dans les applications type RCSF / Approaches of adaptive routing for optimizing energy consumption in applications such WSN

Aoudia, Hania 10 December 2015 (has links)
La gestion de la consommation énergétique est une question incontournable lors la conception et la mise en œuvre d’un RCSF. Garantir un fonctionnement efficace avec un accroissement de la longévité du réseau en se limitant uniquement à une solution matérielle reste insuffisant. Il est donc nécessaire de se tourner vers d’autres solutions logicielles qui permettraient de maitriser l’exploitation de l’information dès sa source jusqu’à son acheminement vers sa destination finale en tenant compte des caractéristiques intrinsèques des capteurs, i.e., faibles capacités de stockage et de puissance de calcul, et contraintes énergétiques associées. Répondre en partie à ces besoins, passe par le développement d’outils informatiques et de stratégies protocolaires en modes basse consommation mettant en œuvre des mécanismes basés sur des techniques de routage d’informations. Dans cette thèse, nous proposons deux solutions protocolaires hiérarchisées HHRP et HRP-DCM. La première met en œuvre un mécanisme de routage adaptatif à base d’un modèle énergétique non linéaire et d’un concept de communication Fils-Parent pour la sélection des meilleurs chemins en tenant compte d’un ensemble de paramètres critiques tels que les distances source-cible, la puissance du signal et l’énergie consommée. Or, la phase de reconnaissance du voisinage nécessite l’utilisation de la puissance des signaux radio pour estimer les distances entre nœuds capteurs, ce qui est un inconvénient majeur puisque cela peut engendrer des dégradations sur les performances du routage et des erreurs d’estimation des mesures RSSI. Ces dernières ne sont exploitables pour la localisation des nœuds qu’au bout d’un certain temps vu que la stabilité du signal n’est garantie que tardivement. Ainsi, le temps alloué pour la phase de reconnaissance devient important, accélérant de ce fait la consommation d’énergie et donc minimise la durée de vie du réseau. Pour y remédier, nous proposons une alternative qui contourne l’utilisation de la puissance du signal RSSI à tous les niveaux du mécanisme en mettant en œuvre une approche de routage hybride basée sur un mécanisme de clusterisation dynamique HRP-DCM. Cette solution permet des améliorations non seulement lors de la phase de reconnaissance du réseau mais aussi sur l’optimisation des chemins lors de la communication. Elle utilise le concept de calcul des distances temporelles lors du déploiement du réseau ainsi les délais alloués à la phase d’initialisation sont raccourcis atténuant de fait la consommation énergétique et l’exploitation des ressources. L’évaluation des performances montre bien que HRP-DCM optimisent mieux le fonctionnement du réseau quelque soit sa densité comparativement à d’autres solutions telles que HHRP TEEN et LEACH. / Managing energy consumption is an unavoidable issue for a WSN design and implementation. Focusing lonely on a hardware solution to ensure an efficient of a running network while increasing its lifetime remains insufficient. It is therefore necessary to turn towards other software solutions that enable a better control of information processing from its source until its final destination by taking into account intrinsic characteristics of sensors, such as low storage and computing capabilities and associated energy constraints. A partial response to these needs requires the development of IT tools and protocolar strategies in low-power modes by implementing mechanisms based on information routing techniques. In this thesis, we propose and develop two hierarchized protocolar solutions HHRP and HRP-DCM. The first one implements an adaptive routing mechanism based on a nonlinear energy model and a concept of communication Son-Parent for a best paths selection by taking into account a set of critical parameters such as distance source-target, signal strength and energy consumption. However, the vicinity recognition phase requires the use of RSSI radio signals to estimate distances between sensor nodes. This can be considered as a major drawback since it may cause damage on routing performances and estimation error on RSSI measurements. These latters can be used for locating nodes only after a while since the stability of RSSI signal is guaranteed only belatedly Thus, the allocated time for recognition phase becomes significant, speeding up thereby energy consumption and thus reduces the lifetime of the network. In this context, we propose an alternative that bypasses the use of RSSI power signal in different levels of HHRP mechanism by implementing a hybrid routing approach based on a dynamic clustering mechanism HRP-DCM. This solution allows improvements in recognition and in paths optimization phases, both. It uses the concept of temporal distances calculation during network deployment. Thus, allocated time for network initialization is shortened mitigating in fact energy consumption and resources exploitation. Performance evaluation shows that HRP-DCM optimizes better network whatever its density compared to other solutions such as HHRP, TEEN and LEACH routing protocols.
2

Energy-efficiency in wireless sensor networks / Économie d'énergie dans les réseaux de capteurs sans fil

Rault, Tifenn 02 October 2015 (has links)
Dans cette thèse, nous avons proposé des solutions originales et performantes pour l’économie d’énergie dans les réseaux de capteurs sans fil (RCSF). Ces contributions s'organisent autour de deux grands axes : les réseaux de capteurs génériques et les réseaux de capteurs sans fil dédiés aux applications santé. Dans un premier temps, nous avons réalisé un état-de-l’art des mécanismes d'économie d’énergie pour les RCSF. Nous avons ensuite proposé deux solutions originales : la première optimise le déplacement d’une station de base, ainsi que la façon dont les données sont stockées dans les capteurs et routées vers le puit mobile ; la seconde optimise le déploiement de chargeurs mobiles, qui une fois dans le réseau permettent de satisfaire la demande en énergie des nœuds via la transmission d’énergie sans fil sur plusieurs sauts. Dans un second temps, nous nous sommes intéressés plus particulièrement aux applications des RCSF pour la supervision de patients à distance. Nous avons introduit une nouvelle classification des techniques économes en énergie adaptées à la spécificité de ces applications santé. Nous avons ensuite proposé une nouvelle architecture pour la supervision de patient à distance à l’aide de capteurs sans fil qui permet de prolonger la durée de vie des capteurs et de la station de base. Cette solution prend en compte l’environnement du patient et l’hétérogénéité des appareils. Nos résultats montrent que la durée de vie des réseaux de capteurs sans fil peut être étendue en utilisant les différentes stratégies proposées. L’efficacité de ces approches a été confirmée à l’aide de nombreuses expérimentations numériques et simulations. / In this thesis, we propose new strategies for energy conservation in wireless sensor networks, so that the operational time of these networks can be extended. The work can be divided into two main focus area, namely general wireless sensor networks, and healthcareoriented wearable sensor networks. In the first part of this thesis we provide a comprehensive survey of the existing energy-efficient mechanisms. Then, we propose two new solutions: the first one optimizes the displacement of a mobile base station as well as buffer usage and data routing at sensor nodes; the second one optimizes the deployment of wireless chargers in the network to satisfy the energy demand of the sensors. The second part of this thesis is dedicated to healthcare application where wearable sensors are used to remotely supervise a patient. We begin with a state-of-the-art of the energy-efficient techniques existing in the literature. We then introduce a new energy-efficient architecture that allows to optimize the lifetime of both the sensor and the base station. This is a context-aware solution that takes into consideration heterogeneous devices. Our results show that the lifetime of the sensor networks can be extended using the proposed strategies. All the results obtained are supported by numerical experiments and extensive simulations.
3

A resource-aware embedded commucation system for highly dynamic networks

Diao, Xunxing 27 May 2011 (has links) (PDF)
Chaque année en Europe, 1.300.000 accidents de la route ont comme conséquence 1.700.000 blessés. Le coût financier d'accidents de la route est évalué à 160 milliards d'euros (approximativement le même coût aux Etats-Unis). VANET (Vehicular Ad-hoc NETwork) est une des technologies clés qui peut permettre de réduire d'une façon significative le nombre d'accidents de la route (e.g. message d'urgence signalant la présence d'un obstacle ou d'un véhicule en cas de brouillard). En plus de l'amélioration de la sécurité et du confort des conducteurs et des passagers, VANET peut contribuer à beaucoup d'applications potentielles telles que la prévision et la détection d'embouteillages, la gestion d'infrastructure de système de transport urbain (e.g. système de transport intelligent multimodal) etc. Dans cette thèse, je présenterai un système embarqué dédié à la communication inter-véhicule particulièrement pour les applications sécuritaires de passagers et de conducteurs. Nos efforts de recherche et de développement sont centrés sur deux principaux objectifs : minimiser le temps de latence intra-noeud et le délai de communication inter-véhicule en prenant en compte le changement dynamique du VANET. De ce fait pour atteindre ces objectifs, des nouvelles approches (e.g. inter-couche 'Cross-layering') ont été explorées pour respecter les contraintes de ressource (QoS, mémoire, CPU et énergie de la communication inter-véhicule) d'un système embarqué à faible coût. Le système de communication embarqué proposé comporte deux composants logiciels principaux : un protocole de communication dénommé CIVIC (Communication Inter Véhicule Intelligente et Coopérative) et un système d'exploitation temps réel appelé HEROS (Hybrid Event-driven and Real-time multitasking Operating System). CIVIC est un protocole de communication géographique à faible consommation énergétique et à faible temps de latence (délai de communication). HEROS gère contextuellement l'ensemble du système (matériel et logiciel) en minimisant le temps de latence et la consommation des ressources (CPU et mémoire). En outre, le protocole de communication CIVIC est équipé d'un système de localisation LCD-GPS (Low Cost Differential GPS). Pour tester et valider les différentes techniques et théories, la plateforme matérielle LiveNode (LImos Versatile Embedded wireless sensor NODE) a été utilisée. En effet, la plateforme LiveNode permet de développer et de prototyper rapidement des applications dans différents domaines. Le protocole de communication CIVIC est basé sur la technique de 'broadcast' à un saut ; de ce fait il est indépendant de la spécificité du réseau. Pour les expérimentations, seule la norme d'IEEE 802.15.4 (ZigBee) a été choisie comme médium d'accès sans fil. Il est à noter que le médium d'accès sans fil ZigBee a été adopté comme le médium standard pour les réseaux de capteurs sans fil (RCSFs) et le standard 6LoWPAN ; car il est peu coûteux et peu gourmand en énergie. Bien que le protocole de communication à l'origine soit conçu pour répondre aux exigences de VANET, ses domaines d'application ne sont pas limités à VANET. Par exemple il a été utilisé dans différents projets tels que MOBI+ (système de transport urbain intelligent) et NeT-ADDED (projet européen FP6 : agriculture de précision). Les VANETs et les RCSFs sont les réseaux fortement dynamiques, mais les causes de changement topologique de réseau sont différentes : dans le réseau VANET, il est dû à la mobilité des véhicules, et dans le RCSF, il est dû aux pannes des noeuds sans fil. Il est à noter que le VANET et le RCSF sont généralement considérés comme un sous-ensemble du réseau MANET (réseau ad-hoc mobile). Cependant, ils sont réellement tout à fait différents du MANET classique, et leurs similitudes et différences seront expliquées en détail dans la thèse. La contribution principale de mes travaux est le protocole CIVIC, qui échange des messages en basant sur l'information géographique des noeuds (position). Les travaux relatifs de la thèse se concentreront sur les techniques, les problèmes et les solutions de routage géographique, mais d'autres techniques de routage seront également adressées. Quelques projets relatifs au protocole de communication ont été étudiés mais leur implémentation et les aspects d'expérimentation n'ont pas été détaillés. Enfin la thèse ne présente pas simplement les techniques et concepts adoptés, et les résultats de simulation, mais en outre, elle expliquera les aspects techniques importants pour la réalisation et l'expérimentation des différentes applications ainsi que les résultats concrets obtenus.
4

A resource-aware embedded commucation system for highly dynamic networks / Un système de communication embarqué conscient des ressources pour des réseaux hautement dynamiques

Diao, Xunxing 27 May 2011 (has links)
Chaque année en Europe, 1.300.000 accidents de la route ont comme conséquence 1.700.000 blessés. Le coût financier d’accidents de la route est évalué à 160 milliards d’euros (approximativement le même coût aux Etats-Unis). VANET (Vehicular Ad-hoc NETwork) est une des technologies clés qui peut permettre de réduire d’une façon significative le nombre d’accidents de la route (e.g. message d’urgence signalant la présence d’un obstacle ou d’un véhicule en cas de brouillard). En plus de l’amélioration de la sécurité et du confort des conducteurs et des passagers, VANET peut contribuer à beaucoup d’applications potentielles telles que la prévision et la détection d’embouteillages, la gestion d’infrastructure de système de transport urbain (e.g. système de transport intelligent multimodal) etc. Dans cette thèse, je présenterai un système embarqué dédié à la communication inter-véhicule particulièrement pour les applications sécuritaires de passagers et de conducteurs. Nos efforts de recherche et de développement sont centrés sur deux principaux objectifs : minimiser le temps de latence intra-noeud et le délai de communication inter-véhicule en prenant en compte le changement dynamique du VANET. De ce fait pour atteindre ces objectifs, des nouvelles approches (e.g. inter-couche ‘Cross-layering’) ont été explorées pour respecter les contraintes de ressource (QoS, mémoire, CPU et énergie de la communication inter-véhicule) d’un système embarqué à faible coût. Le système de communication embarqué proposé comporte deux composants logiciels principaux : un protocole de communication dénommé CIVIC (Communication Inter Véhicule Intelligente et Coopérative) et un système d’exploitation temps réel appelé HEROS (Hybrid Event-driven and Real-time multitasking Operating System). CIVIC est un protocole de communication géographique à faible consommation énergétique et à faible temps de latence (délai de communication). HEROS gère contextuellement l’ensemble du système (matériel et logiciel) en minimisant le temps de latence et la consommation des ressources (CPU et mémoire). En outre, le protocole de communication CIVIC est équipé d’un système de localisation LCD-GPS (Low Cost Differential GPS). Pour tester et valider les différentes techniques et théories, la plateforme matérielle LiveNode (LImos Versatile Embedded wireless sensor NODE) a été utilisée. En effet, la plateforme LiveNode permet de développer et de prototyper rapidement des applications dans différents domaines. Le protocole de communication CIVIC est basé sur la technique de ‘broadcast’ à un saut ; de ce fait il est indépendant de la spécificité du réseau. Pour les expérimentations, seule la norme d’IEEE 802.15.4 (ZigBee) a été choisie comme médium d’accès sans fil. Il est à noter que le médium d’accès sans fil ZigBee a été adopté comme le médium standard pour les réseaux de capteurs sans fil (RCSFs) et le standard 6LoWPAN ; car il est peu coûteux et peu gourmand en énergie. Bien que le protocole de communication à l’origine soit conçu pour répondre aux exigences de VANET, ses domaines d’application ne sont pas limités à VANET. Par exemple il a été utilisé dans différents projets tels que MOBI+ (système de transport urbain intelligent) et NeT-ADDED (projet européen FP6 : agriculture de précision). Les VANETs et les RCSFs sont les réseaux fortement dynamiques, mais les causes de changement topologique de réseau sont différentes : dans le réseau VANET, il est dû à la mobilité des véhicules, et dans le RCSF, il est dû aux pannes des noeuds sans fil. Il est à noter que le VANET et le RCSF sont généralement considérés comme un sous-ensemble du réseau MANET (réseau ad-hoc mobile). Cependant, ils sont réellement tout à fait différents du MANET classique, et leurs similitudes et différences seront expliquées en détail dans la thèse. La contribution principale de mes travaux est le protocole CIVIC, qui échange des messages en basant sur l’information géographique des noeuds (position). (...) / Each year in Europe, 1,300,000 vehicle accidents result in 1,700,000 personal injuries. The financial cost of vehicle accidents is evaluated at 160 billion Euros (approximately the same cost in the USA). VANET (Vehicular Ad-Hoc NETwork) is a key technology that can enable hazard alarming applications to reduce the accident number. In addition to improve the safety for drivers and passengers, VANET can contribute to many potential applications such as detecting and predicting traffic jams, auto-optimizing the traffic flow, and helping disabled passengers to access public transports.This thesis will present an embedded communication system dedicated to VANET especially for the safety-related applications. Our design mainly tries to achieve two requirements: as one can imagine, the embedded communication system for VANET requires extra effort to deal with the highly dynamic network topology caused by moving vehicles, thus to shorten the intra-node system latency and inter-node network delay is essential requirement for such embedded communication system. Besides, a fundamental requirement for any practical embedded system is resource-awareness. Although the embedded communication system on vehicles may gain better hardware supports, the characteristics of embedded hardware still have to cope with resource constraints in terms of QoS, memory, CPU and energy. The embedded communication system involves two major software components: a routing protocol called CIVIC (Communication Inter Véhicule Intelligente et Coopérative) and an embedded operating system called HEROS (Hybrid Event-driven and Real-time multitasking Operating System). The former is a quick reaction and low resource consumption geographic protocol for inter-vehicle message transmissions; and the latter controls the whole system and assures intra-node resource awareness. In addition, the system can use a localization software solution called LCD-GPS (Low Cost Differential GPS) to improve the accuracy of locations. The hardware platform is LiveNode (LImos Versatile Embedded wireless sensor NODE), which is a versatile wireless sensor node enabling to implement rapidly a prototype for different application domains. The communication system is based on the one-hop broadcast, thus it does not have a strict limitation on network specification. For the experiments only, the IEEE 802.15.4 standard is chosen as the underlying wireless access medium. The standard is well known as a low-power consumption standard requiring low-cost devices. Notice that the IEEE 802.15.4 standard is also the wireless access medium of 6LoWPAN. Although the embedded communication system is originally designed to meet the requirements of VANET, but its application domains are not limited to VANET. For example, another network which can use the embedded communication system is WSN (Wireless Sensor Network). CIVIC was used to implement different real-world projects such MOBI+ (intelligent urban transportation system) and EU-FP6 NeT-ADDED (precision agriculture). Both VANET and WSN are highly dynamic networks, but the causes of changing network topology are different: the former is because of the high-mobility feature of vehicles, and the latter is because of the fault of wireless sensors. Note that, although VANET and WSN are both commonly considered as the subset of MANET (Mobile Ad-hoc NETwork), they are actually quite different from the classical MANET, and the similarities and differences will be further explained in the thesis. The major contribution of my works relates to the CIVIC protocol, which routes messages based on the geographic information. The related works of the thesis will focus on the geographic routing techniques, problems and solutions, but other related techniques will also be addressed. Note that, although some related projects were investigated but their implementation and experiment aspects were not detailed. (...)

Page generated in 0.1121 seconds